StampedLock

​StampedLock​​ 其实是对读写锁的一种改进,它支持在读同时进行一个写操作,也就是说,它的性能将会比读写锁更快。

更通俗的讲就是在读锁没有释放的时候是可以获取到一个写锁,获取到写锁之后,读锁阻塞,这一点和读写锁一致,唯一的区别在于 读写锁不支持在没有释放读锁的时候获取写锁 。

​StampedLock​​ 有三种模式:

  • 悲观读:允许多个线程获取悲观读锁。
  • 写锁:写锁和悲观读是互斥的。
  • 乐观读:无锁机制,类似于数据库中的乐观锁,它支持在不释放乐观读的时候是可以获取到一个写锁。

示例代码:

悲观读 + 写锁:

package git.snippets.juc;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.StampedLock;
import java.util.logging.Logger;

// 悲观读 + 写锁
public class StampedLockPessimistic {
private static final Logger log = Logger.getLogger(StampedLockPessimistic.class.getName());
private static final StampedLock lock = new StampedLock();
//缓存中存储的数据
private static final Map<String, String> mapCache = new HashMap<>();
//模拟数据库存储的数据
private static final Map<String, String> mapDb = new HashMap<>();

static {
mapDb.put("zhangsan", "你好,我是张三");
mapDb.put("sili", "你好,我是李四");
}

private static void getInfo(String name) {
//获取悲观读
long stamp = lock.readLock();
log.info("线程名:" + Thread.currentThread().getName() + " 获取了悲观读锁" + " 用户名:" + name);
try {
if ("zhangsan".equals(name)) {
log.info("线程名:" + Thread.currentThread().getName() + " 休眠中" + " 用户名:" + name);
Thread.sleep(3000);
log.info("线程名:" + Thread.currentThread().getName() + " 休眠结束" + " 用户名:" + name);
}
String info = mapCache.get(name);
if (null != info) {
log.info("在缓存中获取到了数据");
return;
}
} catch (InterruptedException e) {
log.info("线程名:" + Thread.currentThread().getName() + " 释放了悲观读锁");
e.printStackTrace();
} finally {
//释放悲观读
lock.unlock(stamp);
}

//获取写锁
stamp = lock.writeLock();
log.info("线程名:" + Thread.currentThread().getName() + " 获取了写锁" + " 用户名:" + name);
try {
//判断一下缓存中是否被插入了数据
String info = mapCache.get(name);
if (null != info) {
log.info("获取到了写锁,再次确认在缓存中获取到了数据");
return;
}
//这里是往数据库获取数据
String infoByDb = mapDb.get(name);
//将数据插入缓存
mapCache.put(name, infoByDb);
log.info("缓存中没有数据,在数据库获取到了数据");
} finally {
//释放写锁
log.info("线程名:" + Thread.currentThread().getName() + " 释放了写锁" + " 用户名:" + name);
lock.unlock(stamp);
}
}

public static void main(String[] args) {
//线程1
Thread t1 = new Thread(() -> {
getInfo("zhangsan");
});

//线程2
Thread t2 = new Thread(() -> {
getInfo("lisi");
});

//线程启动
t1.start();
t2.start();

//线程同步
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}

乐观读:

package git.snippets.juc;

import java.util.concurrent.locks.StampedLock;
import java.util.logging.Logger;

// 乐观写
public class StampedLockOptimistic {
private static final Logger log = Logger.getLogger(StampedLockOptimistic.class.getName());
private static final StampedLock lock = new StampedLock();
private static int num1 = 1;
private static int num2 = 1;

/**
* 修改成员变量的值,+1
*
* @return
*/
private static int sum() {
log.info("求和方法被执行了");
//获取乐观读
long stamp = lock.tryOptimisticRead();
int cnum1 = num1;
int cnum2 = num2;
log.info("获取到的成员变量值,cnum1:" + cnum1 + " cnum2:" + cnum2);
try {
//休眠3秒,目的是为了让其他线程修改掉成员变量的值。
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//判断在运行期间是否存在写操作 true:不存在 false:存在
if (!lock.validate(stamp)) {
log.info("存在写操作!");
//存在写锁
//升级悲观读锁
stamp = lock.readLock();
try {
log.info("升级悲观读锁");
cnum1 = num1;
cnum2 = num2;
log.info("重新获取了成员变量的值=========== cnum1=" + cnum1 + " cnum2=" + cnum2);
} finally {
//释放悲观读锁
lock.unlock(stamp);
}
}
return cnum1 + cnum2;
}

//使用写锁修改成员变量的值
private static void updateNum() {
long stamp = lock.writeLock();
try {
num1 = 2;
num2 = 2;
} finally {
lock.unlock(stamp);
}
}

public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
int sum = sum();
log.info("求和结果:" + sum);
});
t1.start();
//休眠1秒,目的为了让线程t1能执行到获取成员变量之后
Thread.sleep(1000);
updateNum();
t1.join();
log.info("执行完毕");

}

}

使用 StampedLock 的注意事项

  1. 看名字就能看出来StampedLock 不支持重入锁。
  2. 它适用于读多写少的情况,如果不是这种情况,请慎用,性能可能还不如synchronized 。
  3. ​StampedLock​​ 的悲观读锁、写锁不支持条件变量。
  4. 千万不能中断阻塞的悲观读锁或写锁,如果调用阻塞线程的interrupt() ,会导致cpu飙升,如果希望 StampedLock 支持中断操作,请使用 readLockInterruptibly (悲观读锁)与 writeLockInterruptibly (写锁)。

CountDownLatch

类似门闩的概念,可以替代 ​​join​​ ,但是比 ​​join​​ 灵活,因为一个线程里面可以多次 ​​countDown​​ ,但是 ​​join​​ 一定要等线程完成才能执行。

其底层原理是:调用 ​​await()​​ 方法的线程会利用 ​​AQS​​ 排队,一旦数字减为0,则会将 ​​AQS​​ 中排队的线程依次唤醒。

代码如下:

package git.snippets.juc;

import java.util.concurrent.CountDownLatch;

/**
* CountDownLatch可以用Join替代
*/
public class CountDownLatchAndJoin {
public static void main(String[] args) {
useCountDownLatch();
useJoin();
}

public static void useCountDownLatch() {
// use countdownlatch
long start = System.currentTimeMillis();
Thread[] threads = new Thread[100000];
CountDownLatch latch = new CountDownLatch(threads.length);

for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(() -> {
int result = 0;
for (int i1 = 0; i1 < 1000; i1++) {
result += i1;
}
// System.out.println("Current thread " + Thread.currentThread().getName() + " finish cal result " + result);
latch.countDown();
});
}
for (Thread thread : threads) {
thread.start();
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
long end = System.currentTimeMillis();

System.out.println("end latch down, time is " + (end - start));

}

public static void useJoin() {
long start = System.currentTimeMillis();

// use join
Thread[] threads = new Thread[100000];

for (int i = 0; i < threads.length; i++) {
threads[i] = new Thread(() -> {
int result = 0;
for (int i1 = 0; i1 < 1000; i1++) {
result += i1;
}
// System.out.println("Current thread " + Thread.currentThread().getName() + " finish cal result " + result);
});
}
for (Thread thread : threads) {
thread.start();
}
for (Thread thread : threads) {
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

long end = System.currentTimeMillis();

System.out.println("end join, time is " + (end - start));
}
}

CyclicBarrier

类似栅栏,类比:满了20个乘客就发车 这样的场景。

比如:一个程序可能收集如下来源的数据:

  1. 数据库
  2. 网络
  3. 文件

程序可以并发执行,用线程操作1,2,3,然后操作完毕后再合并, 然后执行后续的逻辑操作,就可以使用 ​​CyclicBarrier​

代码如下:

package git.snippets.juc;

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

/**
* CyclicBarrier示例:满员发车
*
* @author <a href="mailto:410486047@qq.com">Grey</a>
* @since 1.8
*/
public class CyclicBarrierTest {
public static void main(String[] args) {
CyclicBarrier barrier = new CyclicBarrier(20, () -> {
System.out.println("满了20,发车");
});
for (int i = 0; i < 100; i++) {
new Thread(() -> {
try {
barrier.await();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}

Semaphore

表示信号量,有如下两个操作:

​s.acquire()​​ 信号量减1

​s.release()​​ 信号量加1

到 0 以后,就不能执行了,这个可以用于 限流 。

底层原理是:如果没有线程许可可用,则线程阻塞,并通过 AQS 来排队,可以通过 ​​release()​​ 方法来释放许可,当某个线程释放了某个许可后,会从 AQS 中正在排队的第一个线程依次开始唤醒,直到没有空闲许可。

Semaphore 使用示例:有N个线程来访问,我需要限制同时运行的只有信号量大小的线程数。

代码如下:

package git.snippets.juc;

import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;

/**
* Semaphore用于限流
*/
public class SemaphoreUsage {
public static void main(String[] args) {
Semaphore semaphore = new Semaphore(1);
new Thread(() -> {
try {
semaphore.acquire();
TimeUnit.SECONDS.sleep(2);
System.out.println("Thread 1 executed");
} catch (Exception e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}).start();

new Thread(() -> {
try {
semaphore.acquire();
TimeUnit.SECONDS.sleep(2);
System.out.println("Thread 2 executed");
} catch (Exception e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}).start();
}
}

​Semaphore​​ 可以有 公平 和 非公平 的方式进行配置。

​Semaphore​​ 和 ​​CountDownLatch​​ 的区别?

Semaphore 是信号量,可以做限流,限制 n 个线程并发,释放一个线程后就又能进来一个新的线程。

CountDownLatch 是闭锁,带有阻塞的功能,必须等到 n 个线程都执行完后,被阻塞的线程才能继续往下执行。

Guava RateLimiter

采用令牌桶算法,用于限流

示例代码如下

package git.snippets.juc;

import com.google.common.util.concurrent.RateLimiter;
import java.util.List;
import java.util.concurrent.Executor;

/**
* @author <a href="mailto:410486047@qq.com">Grey</a>
* @date 2021/4/21
* @since
*/
public class RateLimiterUsage {
//每秒只发出2个令牌
static final RateLimiter rateLimiter = RateLimiter.create(2.0);
static void submitTasks(List<Runnable> tasks, Executor executor) {
for (Runnable task : tasks) {
rateLimiter.acquire(); // 也许需要等待
executor.execute(task);
}
}
}

注:上述代码需要引入 ​​Guava 包​​ 。

Phaser(Since jdk1.7)

遗传算法,可以用这个结婚的场景模拟: 假设婚礼的宾客有 5 个人,加上新郎和新娘,一共 7 个人。 我们可以把这 7 个人看成 7 个线程,有如下步骤要执行。

  1. 到达婚礼现场
  2. 吃饭
  3. 离开
  4. 拥抱(只有新郎和新娘线程可以执行)

每个阶段执行完毕后才能执行下一个阶段,其中拥抱阶段只有新郎新娘这两个线程才能执行。

以上需求,我们可以通过 Phaser 来实现,具体代码和注释如下:

package git.snippets.juc;

import java.util.Random;
import java.util.concurrent.Phaser;
import java.util.concurrent.TimeUnit;

public class PhaserUsage {
static final Random R = new Random();
static WeddingPhaser phaser = new WeddingPhaser();

static void millSleep() {
try {
TimeUnit.MILLISECONDS.sleep(R.nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
}

public static void main(String[] args) {
// 宾客的人数
final int guestNum = 5;
// 新郎和新娘
final int mainNum = 2;
phaser.bulkRegister(mainNum + guestNum);
for (int i = 0; i < guestNum; i++) {
new Thread(new Person("宾客" + i)).start();
}
new Thread(new Person("新娘")).start();
new Thread(new Person("新郎")).start();
}

static class WeddingPhaser extends Phaser {
@Override
protected boolean onAdvance(int phase, int registeredParties) {
switch (phase) {
case 0:
System.out.println("所有人到齐");
return false;
case 1:
System.out.println("所有人吃饭");
return false;
case 2:
System.out.println("所有人离开");
return false;
case 3:
System.out.println("新郎新娘拥抱");
return true;
default:
return true;
}
}
}

static class Person implements Runnable {
String name;

Person(String name) {
this.name = name;
}

@Override
public void run() {
// 先到达婚礼现场
arrive();
// 吃饭
eat();
// 离开
leave();
// 拥抱,只保留新郎和新娘两个线程可以执行
hug();
}

private void arrive() {
millSleep();
System.out.println("name:" + name + " 到来");
phaser.arriveAndAwaitAdvance();
}

private void eat() {
millSleep();
System.out.println("name:" + name + " 吃饭");
phaser.arriveAndAwaitAdvance();
}

private void leave() {
millSleep();
System.out.println("name:" + name + " 离开");
phaser.arriveAndAwaitAdvance();
}

private void hug() {
if ("新娘".equals(name) || "新郎".equals(name)) {
millSleep();
System.out.println("新娘新郎拥抱");
phaser.arriveAndAwaitAdvance();
} else {
phaser.arriveAndDeregister();
}
}
}
}

Exchanger

用于线程之间交换数据, ​​exchange()​​ 方法是阻塞的,所以要两个 ​​exchange​​ 行为都执行到才会触发交换。

package git.snippets.juc;

import java.util.concurrent.Exchanger;
import java.util.concurrent.TimeUnit;

/**
* Exchanger用于两个线程之间交换变量
*/
public class ExchangerUsage {
static Exchanger<String> semaphore = new Exchanger<>();

public static void main(String[] args) {

new Thread(() -> {
String s = "T1";
try {
s = semaphore.exchange(s);
TimeUnit.SECONDS.sleep(2);
System.out.println("Thread 1(T1) executed, Result is " + s);
} catch (Exception e) {
e.printStackTrace();
}
}).start();

new Thread(() -> {
String s = "T2";
try {
s = semaphore.exchange(s);
TimeUnit.SECONDS.sleep(2);
System.out.println("Thread 2(T2) executed, Result is " + s);
} catch (Exception e) {
e.printStackTrace();
}
}).start();
}
}

LockSupport

其他锁的底层用的是 ​​AQS​

原先让线程等待需要 ​​wait/await​​ ,现在仅需要 ​​LockSupport.park()​

原先叫醒线程需要 ​​notify/notifyAll​​ ,现在仅需要 ​​LockSupport.unpark()​​ , ​​LockSupport.unpark()​​ 还可以叫醒指定线程,

示例代码:

package git.snippets.juc;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.LockSupport;

/**
* 阻塞指定线程,唤醒指定线程
*/
public class LockSupportUsage {
public static void main(String[] args) {
Thread t = new Thread(() -> {
for (int i = 0; i < 10; i++) {
try {
if (i == 5) {
LockSupport.park();
}
if (i == 8) {
LockSupport.park();
}
TimeUnit.SECONDS.sleep(1);
System.out.println(i);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
t.start();
// unpark可以先于park调用
//LockSupport.unpark(t);
try {
TimeUnit.SECONDS.sleep(8);
} catch (InterruptedException e) {
e.printStackTrace();
}

LockSupport.unpark(t);
System.out.println("after 8 seconds");
}
}

实现一个监控元素的容器

实现一个容器,提供两个方法

// 向容器中增加一个元素
void add(T t);
// 返回容器大小
int size();

有两个线程,线程1添加10个元素到容器中,线程2实现监控元素的个数,当个数到5个时,线程2给出提示并结束

方法 1\. 使用 ​​wait + notify​​ 实现

方法 2\. 使用 ​​CountDownLatch​​ 实现

方法 3\. 使用 ​​LockSupport​​ 实现

代码如下:

package git.snippets.juc;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.LockSupport;

// 实现一个容器,提供两个方法,add,size,有两个线程,
// 线程1添加10个元素到容器中,
// 线程2实现监控元素的个数,
// 当个数到5个时,线程2给出提示并结束
public class MonitorContainer {

public static void main(String[] args) {

useLockSupport();
// useCountDownLatch();
// useNotifyAndWait();
}

/**
* 使用LockSupport
*/
private static void useLockSupport() {
System.out.println("use LockSupport...");
Thread adder;
List<Object> list = Collections.synchronizedList(new ArrayList<>());
Thread finalMonitor = new Thread(() -> {
LockSupport.park();
if (match(list)) {
System.out.println("filled 5 elements size is " + list.size());
LockSupport.unpark(null);
}
});
adder = new Thread(() -> {
for (int i = 0; i < 10; i++) {
increment(list);
if (match(list)) {
LockSupport.unpark(finalMonitor);
}
}
});
adder.start();
finalMonitor.start();
}

/**
* 使用CountDownLatch
*/
private static void useCountDownLatch() {
System.out.println("use CountDownLatch...");
List<Object> list = Collections.synchronizedList(new ArrayList<>());
CountDownLatch latch = new CountDownLatch(5);
Thread adder = new Thread(() -> {
for (int i = 0; i < 10; i++) {
increment(list);
if (i <= 4) {
latch.countDown();
}
}
});
Thread monitor = new Thread(() -> {
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
if (match(list)) {
System.out.println("filled 5 elements");
}
});
adder.start();
monitor.start();
}

/**
* notify + wait 实现
*/
private static void useNotifyAndWait() {
System.out.println("use notify and wait...");
List<Object> list = Collections.synchronizedList(new ArrayList<>());
final Object o = new Object();
Thread adder = new Thread(() -> {
synchronized (o) {
for (int i = 0; i < 10; i++) {
increment(list);
if (match(list)) {
o.notify();
try {
o.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
System.out.println("add finished");
o.notify();
}
});
Thread monitor = new Thread(() -> {
synchronized (o) {
if (match(list)) {
System.out.println("5 elements added " + list.size());
o.notify();
try {
o.wait();
System.out.println("monitor finished");
o.notify();
} catch (InterruptedException e) {
e.printStackTrace();
}

}
}
});
adder.start();
monitor.start();
}

/**
* 只要是5的倍数,就循环打印
*/
private static void useNotifyAndWaitLoop() {
List<Object> list = Collections.synchronizedList(new ArrayList<>());
final Object o = new Object();
Thread adder = new Thread(() -> {
synchronized (o) {
for (; ; ) {
increment(list);
if (match(list)) {
o.notify();
try {
o.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
});
Thread monitor = new Thread(() -> {
synchronized (o) {
while (true) {
if (match(list)) {
System.out.println("filled 5 elements");
}
o.notify();
try {
o.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
});
adder.start();
monitor.start();
}

private static void increment(List<Object> list) {
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
list.add(new Object());
System.out.println("list add the ele, size is " + list.size());
}

private static boolean match(List<Object> list) {
return list.size() % 5 == 0;
}
}

生产者消费者问题

写一个固定容量的同步容器,拥有 ​​put​​ 和 ​​get​​ 方法,以及 ​​getCount​​ 方法,能够支持 2 个生产者线程以及 10 个消费者线程的阻塞调用。

方法 1\. 使用 ​​wait/notifyAll​

方法 2. ​​ReentrantLock​​ 的 ​​Condition​​ ,本质就是等待队列

package git.snippets.juc;

import java.util.LinkedList;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

// 写一个固定容量的同步容器,拥有put和get方法,以及getCount方法,能够支持2个生产者线程以及10个消费者线程的阻塞调用。
public class ProducerAndConsumer {
public static void main(String[] args) {
// MyContainerByCondition container = new MyContainerByCondition(100);
MyContainerByNotifyAndWait container = new MyContainerByNotifyAndWait(100);
for (int i = 0; i < 25; i++) {
new Thread(container::get).start();
}
for (int i = 0; i < 20; i++) {
new Thread(() -> container.put(new Object())).start();
}
}
}

// 使用ReentrantLock的Condition
class MyContainerByCondition {
static ReentrantLock lock = new ReentrantLock();
final int MAX;
private final LinkedList<Object> list = new LinkedList<>();
Condition consumer = lock.newCondition();
Condition producer = lock.newCondition();

public MyContainerByCondition(int limit) {
this.MAX = limit;
}

public void put(Object object) {
lock.lock();
try {
while (getCount() == MAX) {
System.out.println("container is full");
try {
producer.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
list.add(object);
consumer.signalAll();
System.out.println("contain add a object, current size " + getCount());

} finally {
lock.unlock();
}

}

public Object get() {
lock.lock();
try {
while (getCount() == 0) {
try {
System.out.println("container is empty");
consumer.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Object object = list.removeFirst();
producer.signalAll();

System.out.println("contain get a object, current size " + getCount());
return object;
} finally {
lock.unlock();
}

}

public synchronized int getCount() {
return list.size();
}
}

// 使用synchronized的wait和notifyAll
class MyContainerByNotifyAndWait {
LinkedList<Object> list = null;
final int limit;

MyContainerByNotifyAndWait(int limit) {
this.limit = limit;
list = new LinkedList<>();
}

synchronized int getCount() {
return list.size();
}

// index 从0开始计数
synchronized Object get() {
while (list.size() == 0) {
System.out.println("container is empty");
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Object o = list.removeFirst();

System.out.println("get a data");
this.notifyAll();
return o;
}

synchronized void put(Object data) {
while (list.size() > limit) {
System.out.println("container is full , do not add any more");
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
list.add(data);

System.out.println("add a data");
this.notifyAll();
}
}