作者:Dong


1、  概述

并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。

2、  基本操作

并查集是一种非常简单的数据结构,它主要涉及两个基本操作,分别为:

A. 合并两个不相交集合

B. 判断两个元素是否属于同一个集合

(1)       合并两个不相交集合(Union(x,y))

合并操作很简单:先设置一个数组Father[x],表示x的“父亲”的编号。那么,合并两个不相交集合的方法就是,找到其中一个集合最父亲的父亲(也就是最久远的祖先),将另外一个集合的最久远的祖先的父亲指向它。


上图为两个不相交集合,b图为合并后Father(b):=Father(g)

(2)       判断两个元素是否属于同一集合(Find_Set(x))

本操作可转换为寻找两个元素的最久远祖先是否相同。可以采用递归实现。

3、  优化

(1)       Find_Set(x)时,路径压缩

寻找祖先时,我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度。为了避免这种情况,我们需对路径进行压缩,即当我们经过”递推”找到祖先节点后,”回溯”的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示。可见,路径压缩方便了以后的查找。


(2)       Union(x,y)时,按秩合并

即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。

4、  编程实现

int        father[MAX];           /* father[x]表示x的父节点*/       


         int        rank[MAX];             /*rank[x]表示x的秩*/       


                 


         
       


         void        Make_Set(        int        x)       


         {       


         father[x] = x;         //根据实际情况指定的父节点可变化       


         rank[x] = 0;           //根据实际情况初始化秩也有所变化       


         }       


         
       


         /* 查找x元素所在的集合,回溯时压缩路径*/       


         int        Find_Set(        int        x)       


         {       


         if        (x != father[x])       


         {       


         father[x] = Find_Set(father[x]);         //这个回溯时的压缩路径是精华         


         }       


         return        father[x];       


         }       


                 


         /*       


                 


         按秩合并x,y所在的集合       


                 


         下面的那个if else结构不是绝对的,具体根据情况变化       


                 


         但是,宗旨是不变的即,按秩合并,实时更新秩。       


                 


         */       


         void        Union(        int        x,         int        y)       


         {       


                 


x = Find_Set(x);


         y = Find_Set(y);       


         if        (x == y)         return        ;       


         if        (rank[x] > rank[y])       


         {       


         father[y] = x;       


         }       


else


         {       


         if        (rank[x] == rank[y])       


         {       


         rank[y]++;       


         }       


         father[x] = y;       


         }       


         }


5、  复杂度分析

空间复杂度为O(N),建立一个集合的时间复杂度为O(1),N次合并M查找的时间复杂度为O(M Alpha(N)),这里Alpha是Ackerman函数的某个反函数,在很大的范围内(人类目前观测到的宇宙范围估算有10的80次方个原子,这小于前面所说的范围)这个函数的值可以看成是不大于4的,所以并查集的操作可以看作是线性的。具体复杂度分析过程见参考资料(3)。

6、  应用

并查集常作为另一种复杂的数据结构或者算法的存储结构。常见的应用有:求无向图的连通分量个数,最近公共祖先(LCA),带限制的作业排序,实现Kruskar算法求最小生成树等。

7、  参考资料

(1)       并查集:http://www.nocow.cn/index.php/%E5%B9%B6%E6%9F%A5%E9%9B%86

(2)       博文《并查集详解》:

(3)       Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7. Chapter 21: Data structures for Disjoint Sets, pp. 498–524.

————————————————————————————————————-

更多关于数据结构和算法的介绍,请查看:数据结构与算法汇总

————————————————————————————————————-

 并查集学习:

l         并查集:(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

l         并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:

利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图


并查集基础_并查集



l         并查集的优化

1、Find_Set(x)时 路径压缩
寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

2、Union(x,y)时 按秩合并

即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。


并查集基础_复杂度_02