​http://www.elijahqi.win/archives/3414​​​
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。

Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output
仅包一行,一个整数:最大的魔力值

Sample Input
3
1 10
2 20
3 30

Sample Output
50

HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,

则会发生魔法抵消,得不到法杖。

可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。

对于全部的数据:N ≤ 1000,Numberi ≤ 10^18

,Magici ≤ 10^4

Source
Day2

虽然不会证明 但是一看就是cqoi的新nim游戏

按照值排序 然后贪心的插入线性基直到插满了为止

#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
inline char gc(){
static char now[1<<16],*S,*T;
if(T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
return *S++;
}
inline ll read(){
ll x=0,f=1;char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=-1;ch=gc();}
while(isdigit(ch)) x=x*10+ch-'0',ch=gc();
return x*f;
}
const int N=1100;
struct node{
ll nm;int v;
}a[N];
inline bool cmp(const node &a,const node &b){return a.v>b.v;}
ll s[100];int n;
int main(){
freopen("bzoj2460.in","r",stdin);
n=read();
for (int i=1;i<=n;++i) a[i].nm=read(),a[i].v=read();
sort(a+1,a+n+1,cmp);int ans=0;
for (int i=1;i<=n;++i){
for (int j=60;~j;--j){
if (!(a[i].nm&(1LL<<j))) continue;
if (!s[j]) {s[j]=a[i].nm;break;}
a[i].nm^=s[j];
}if (a[i].nm) ans+=a[i].v;
}printf("%d\n",ans);
return 0;
}