一、 决策树简介

决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件。如图所示,决策树从根节点开始延伸,经过不同的判断条件后,到达不同的子节点。而上层子节点又可以作为父节点被进一步划分为下层子节点。一般情况下,我们从根节点输入数据,经过多次判断后,这些数据就会被分为不同的类别。这就构成了一颗简单的分类决策树。

决策树_数据

决策树_信息增益_02

二、 相关知识

请参考周志华《机器学习》第4章:决策树

注意,第75页有一行内容:信息熵的值越小,则样本集合的纯度越高。
这怎么理解呢?可举几个例子来帮助理解
例1:
p1 = 1, p2 = 0, 则Ent(D) = - (1 * log1 + 0 * log0) = 0
这表示样本集合里只有一种样本。纯度最高。

例2:
p1 = p2 = 0.5,则Ent(D) = - (0.5 * log0.5 + 0.5 * log0.5) = - (-0.5 - 0.5) = 1
样本集合中有两种样本,每种样本的纯度都是50%

例3:
p1 = 0.5, p2 = p3 = 0.25,则Ent(D) = -(0.5 * log0.5 + 0.25 * log0.25 + 0.25 * log0.25) = -(-0.5 - 0.5 - 0.5) = 1.5

例4:
p1 = p2 = p3 = p4 = 0.25,则Ent(D) = 2

例5:
p1 = p2 = p3 = p4 = 1/1024,则Ent(D) = 10

通过上面几个可以看出来,熵值越小,纯度越高,熵值越大,纯度越低。纯度范围为[0, log|y|]

三、 数据集

为了更好地理解程序,咱们只采用15行数据来实现决策树二分类。这些数据中,前6行是特征属性,最后一行是分类结果。

2,2,2,4,0,2,1
2,2,2,2,0,1,0
2,2,2,2,0,2,0
2,2,2,2,1,0,0
2,2,2,2,1,1,0
2,2,2,2,1,2,0
2,2,2,2,2,0,0
2,2,2,2,2,1,0
2,2,2,2,2,2,0
2,2,2,4,0,0,0
2,2,2,4,0,1,0
2,2,2,4,0,2,1
2,2,2,4,1,0,0
2,2,2,4,1,1,0
2,2,2,4,1,2,1

对于上面的十五行数据,咱们可以把前1/3(即前5行)数据做为测试集,把后2/3(即后10行)数据作为训练集。
注意:这里是为了好理解,划分成前1/3和后2/3,更好的做法是随机挑选一部分作为测试集,剩余的部分作为训练集。

四、 算法思路

可直接查看周志华《机器学习》中的思路

决策树_数据_03

五、 实现过程

(一)利用信息熵和信息增益

信息熵越小越好,信息增益越大越好。
信息熵的公式为:

决策树_信息增益_04

对于各属性,信息增益的公式为:

决策树_数据_05

因为D都是一样的,程序中可以省略掉D。用信息增益最大的属性作为节点划分,即要也上式最大,也即要求下式最小:

决策树_决策树_06

实现代码:

def __get_info_entropy(label, attr):
result = 0.0
for this_attr in np.unique(attr):
sub_label, entropy = label[np.where(attr == this_attr)[0]], 0.0
for this_label in np.unique(sub_label):
p = len(np.where(sub_label == this_label)[0]) / len(sub_label)
entropy -= p * np.log2(p)
result += len(sub_label) / len(label) * entropy
print("result:", result)
return

(二)划分属性

训练集的数据(后10行)为

2,2,2,2,1,2,0
2,2,2,2,2,0,0
2,2,2,2,2,1,0
2,2,2,2,2,2,0
2,2,2,4,0,0,0
2,2,2,4,0,1,0
2,2,2,4,0,2,1
2,2,2,4,1,0,0
2,2,2,4,1,1,0
2,2,2,4,1,2,1

根据上面的代码,计算出的各属性的信息增益分别为:

第0个属性的信息增益为:0.7219280948873623
第1个属性的信息增益为:0.7219280948873623
第2个属性的信息增益为:0.7219280948873623
第3个属性的信息增益为:0.5509775004326937
第4个属性的信息增益为:0.6
第5个属性的信息增益为:0.4

上述中最后一个值0.4最小,所以取该值所对应的第5列(从0开始计数)属性作为根结点。
用第5列属性进行划分,属性0对应着分类0,属性1对应着分类0,属性2对应着分类0和1,此时树的结构是这样的:

决策树_信息增益_07

第二个属性如何计算呢?
找出第5列属性的值为2所对应的类别。再找出这些类别对应的各列属性值(不包含第5列属性),得

2,2,2,2,1,0
2,2,2,2,2,0
2,2,2,4,0,1
2,2,2,4,1,1

这里前五列表示属性0,1,2,3,4;最后一列表示分类。
计算出的各属性的信息增益分别为:

第0个属性的信息增益为:1.0
第1个属性的信息增益为:1.0
第2个属性的信息增益为:1.0
第3个属性的信息增益为:0.0
第4个属性的信息增益为:0.5

则取第3个属性来划分。第3个属性取值为2时,分类为0;取值为4时,分类为1。
此时的决策树为

决策树_决策树_08

(三)预测结果

需要预测的五条数据为
2,2,2,4,0,2,1
2,2,2,2,0,1,0
2,2,2,2,0,2,0
2,2,2,2,1,0,0
2,2,2,2,1,1,0
前六列是特征属性,最后一列是实际结果,用来和预测结果做比较。
第一条数据,第5个属性值是2,需要再判断第3个属性,第3个属性的值为4,根据决策树得出的预测分类为1,与实际结果吻合
第二条数据,第5个属性值是1,根据决策树得出的预测分类为0,与实际结果吻合
第三条数据,第5个属性值是2,需要再判断第3个属性,第3个属性的值为2,根据决策树得出的预测分类为0,与实际结果吻合
第四条数据,第5个属性值是0,根据决策树得出的预测分类为0,与实际结果吻合
第五条数据,第5个属性值是1,根据决策树得出的预测分类为0,与实际结果吻合

六、 完整代码

(1)DecisionTree.py

# 具有两种剪枝功能的简单决策树
# 使用信息熵进行划分,剪枝时采用激进策略(即使剪枝后正确率相同,也会剪枝)
import numpy as np


class Tree:
def __init__(self, label, attr, pruning=None):
self.__root = None
boundary = len(label) // 3

if pruning is None:
self.__root = self.__run_build(label[boundary:], attr[boundary:],
np.array(range(len(attr.transpose()))), False)
return
if pruning == 'Pre':
self.__root = self.__run_build(label[boundary:], attr[boundary:],
np.array(range(len(attr.transpose()))),
True, attr[0:boundary], label[0:boundary])
elif pruning == 'Post':
self.__root = self.__run_build(label[boundary:], attr[boundary:],
np.array(range(len(attr.transpose()))), False)
self.print_tree()
self.__post_pruning(self.__root, attr[0:boundary], label[0:boundary])
else:
raise RuntimeError('未能识别的参数:%s' % pruning)

@staticmethod
# 返回使用特定属性划分下的信息熵之和
# label: 类别标签
# attr: 用于进行数据划分的属性
def __get_info_entropy(label, attr):
result = 0.0
for this_attr in np.unique(attr):
sub_label, entropy = label[np.where(attr == this_attr)[0]], 0.0
for this_label in np.unique(sub_label):
p = len(np.where(sub_label == this_label)[0]) / len(sub_label)
entropy -= p * np.log2(p)
result += len(sub_label) / len(label) * entropy
return result

# 递归构建一颗决策树
# label: 维度为1 * N的数组。第i个元素表示第i行数据所对应的标签
# attr: 维度为 N * M 的数组,每行表示一条数据的属性,列数随着决策树的构建而变化
# attr_idx: 表示每个属性在原始属性集合中的索引,用于决策树的构建
# pre_pruning: 表示是否进行预剪枝
# check_attr: 在预剪枝时,用作测试数据的属性集合
# check_label: 在预剪枝时,用作测试数据的验证标签
def __run_build(self, label, attr, attr_idx, pre_pruning, check_attr=None, check_label=None):
node, right_count = {}, None
max_type = np.argmax(np.bincount(label))
if len(np.unique(label)) == 1:
# 如果所有样本属于同一类C,则将结点标记为C
node['type'] = label[0]
return node
if attr is None or len(np.unique(attr, axis=0)) == 1:
# 如果 attr 为空或者 attr 上所有元素取值一致,则将结点标记为样本数最多的类
node['type'] = max_type
return node
attr_trans = np.transpose(attr) #每一行就是原先的属性列,转置是为了计算方便
min_entropy, best_attr = np.inf, None
# 获取各种划分模式下的信息熵之和(作用和信息增益类似)
# 并以此为信息,找出最佳的划分属性
if pre_pruning:
right_count = len(np.where(check_label == max_type)[0])
for this_attr in attr_trans:
entropy = self.__get_info_entropy(label, this_attr)
if entropy < min_entropy:
min_entropy = entropy
best_attr = this_attr
# branch_attr_idx 表示用于划分的属性是属性集合中的第几个
branch_attr_idx = np.where((attr_trans == best_attr).all(1))[0][0]
if pre_pruning:
sub_right_count = 0
check_attr_trans = check_attr.transpose()
# branch_attr_idx 表示本次划分依据的属性属于属性集中的哪一个
for val in np.unique(best_attr):
# 按照预划分的特征进行划分,并统计划分后的正确率
# branch_data_idx 表示数据集中,被划分为 idx 的数据的索引
branch_data_idx = np.where(best_attr == val)[0]
# predict_label 表示一次划分以后,该分支数据的预测类别
print(label[branch_data_idx])
print(np.bincount(label[branch_data_idx]))
predict_label = np.argmax(np.bincount(label[branch_data_idx]))
# check_data_idx 表示验证集中,属性编号为 branch_attr_idx 的属性值等于 val 的项的索引
check_data_idx = np.where(check_attr_trans[branch_attr_idx] == val)[0]
# check_branch_label 表示按照当前特征划分以后,被分为某一类的数据的标签
check_branch_label = check_label[check_data_idx]
# 随后判断这些标签是否等于前面计算得到的类别,如果相等,则分类正确
sub_right_count += len(np.where(check_branch_label == predict_label)[0])
if sub_right_count <= right_count:
# 如果划分后的正确率小于等于不划分的正确率,则剪枝
node['type'] = max_type
return node
values = []
for val in np.unique(best_attr):
values.append(val)
branch_data_idx = np.where(best_attr == val)[0]
if len(branch_data_idx) == 0:
new_node = {'type': np.argmax(np.bincount(label))}
else:
# 按照划分构造新数据,并开始递归
branch_label = label[branch_data_idx]

# 哪几行branch_attr对应着上面的branch_label数组
branch_attr = np.delete(attr_trans, branch_attr_idx, axis=0).transpose()[branch_data_idx]
new_node = self.__run_build(branch_label, branch_attr,
np.delete(attr_idx, branch_attr_idx, axis=0),
pre_pruning, check_attr, check_label)
node[str(val)] = new_node
node['attr'] = attr_idx[branch_attr_idx]
node['type'] = max_type
node['values'] = values
return node

# 后剪枝
# node: 当前进行判断和剪枝操作的结点
# check_attr: 用于验证的数据属性集
# check_label: 用于验证的数据标签集
def __post_pruning(self, node, check_attr, check_label):
check_attr_trans = check_attr.transpose()
if node.get('attr') is None:
# attr 为 None 代表叶节点
return len(np.where(check_label == node['type'])[0])
sub_right_count = 0
for val in node['values']:
sub_node = node[str(val)]
# 找到当前分支点中,数据属于 idx 这一分支的数据的索引
idx = np.where(check_attr_trans[node['attr']] == val)[0]
# 使用上述数据,从子节点开始新的递归
sub_right_count += self.__post_pruning(sub_node, check_attr[idx], check_label[idx])
if sub_right_count <= len(np.where(check_label == node['type'])[0]):
for val in node['values']:
del node[str(val)]
del node['values']
del node['attr']
return len(np.where(check_label == node['type'])[0])
return sub_right_count

# 根据构建的决策树预测结果
# data: 用于预测的数据,维度为M
# return: 预测结果
def predict(self, data):
node = self.__root
while node.get('attr') is not None:
attr = node['attr']
node = node.get(str(data[attr]))
if node is None:
return None
return node.get('type')

# 以文本形式(类JSON)打印出决策树
def print_tree(self):

(2)Main.py

import DecisionTree
import numpy as np


if __name__ == '__main__':
print('正在准备数据并种树……')
file = open('Data/car.data')
lines = file.readlines()
raw_data = np.zeros([len(lines), 7], np.int32)
for idx in range(len(lines)):
raw_data[idx] = np.array(lines[idx].split(','), np.int32)
file.close()
#np.random.shuffle(raw_data)
data = raw_data.transpose()[0:6].transpose()
label = raw_data.transpose()[6]
# tree_no_pruning = DecisionTree.Tree(label, data, None)
# tree_no_pruning.print_tree()
# tree_pre_pruning = DecisionTree.Tree(label, data, 'Pre')
# tree_pre_pruning.print_tree()
tree_post_pruning = DecisionTree.Tree(label, data, 'Post')
tree_post_pruning.print_tree()
test_count = len(label) // 3
test_data, test_label = data[0:test_count], label[0:test_count]
times_no_pruning, times_pre_pruning, times_post_pruning = 0, 0, 0
print('正在检验结果(共 %d 条验证数据)' % test_count)
for idx in range(test_count):
# if tree_no_pruning.predict(test_data[idx]) == test_label[idx]:
# times_no_pruning += 1
# if tree_pre_pruning.predict(test_data[idx]) == test_label[idx]:
# times_pre_pruning += 1
if tree_post_pruning.predict(test_data[idx]) == test_label[idx]:
times_post_pruning += 1
#print('【未剪枝】:命中 %d 次,命中率 %.2f%%' % (times_no_pruning, times_no_pruning * 100 / test_count))
#print('【预剪枝】:命中 %d 次,命中率 %.2f%%' % (times_pre_pruning, times_pre_pruning * 100 / test_count))
print('【后剪枝】:命中 %d 次,命中率 %.2f%%' % (times_post_pruning, times_post_pruning * 100

运行结果:

正在准备数据并种树……
决策树的结构为:
{'0': {'type': 0}, '1': {'type': 0}, '2': {'2': {'type': 0}, '4': {'type': 1}, 'attr': 3, 'type': 0, 'values': [2, 4]}, 'attr': 5, 'type': 0, 'values': [0, 1, 2]}
正在检验结果(共 5 条验证数据)
【未剪枝】:命中 5 次,命中率 100.00%


机器学习交流QQ群:658291732
TopCoder & Codeforces & AtCoder交流QQ群:648202993
更多内容请关注微信公众号

决策树_信息增益_09