假设有两个数x和y,存在一个最大公约数z=(x,y),即x和y都有公因数z,那么x一定能被z整除,y也一定能被z整除,所以x和y的线性组合mx±ny也一定能被z整除。(m和n可取任意整数)
对于辗转相除法来说,思路就是:若x>y,设x/y=n余c,则x能表示成x=ny+c的形式,将ny移到左边就是x-ny=c,由于一般形式的mx±ny能被z整除,所以等号左边的x-ny(作为mx±ny的一个特例)就能被z整除,即x除y的余数c也能被z整除。
假设有两个数x和y,存在一个最大公约数z=(x,y),即x和y都有公因数z,那么x一定能被z整除,y也一定能被z整除,所以x和y的线性组合mx±ny也一定能被z整除。(m和n可取任意整数)
对于辗转相除法来说,思路就是:若x>y,设x/y=n余c,则x能表示成x=ny+c的形式,将ny移到左边就是x-ny=c,由于一般形式的mx±ny能被z整除,所以等号左边的x-ny(作为mx±ny的一个特例)就能被z整除,即x除y的余数c也能被z整除。
上一篇:移动端开发的兼容问题
下一篇:34.丑数
java获取当月最大日
悠哉游哉,辗转...
练习题
欧几里得算法,求最大公约数。
辗转相除法求最大公约数
举报文章
请选择举报类型
补充说明
0/200
上传截图
格式支持JPEG/PNG/JPG,图片不超过1.9M