基于Zookeeper实现分布式锁实践
1、什么是Zookeeper?
Zookeeper是一个分布式的,开源的分布式应用程序协调服务,是Hadoop和hbase的重要组件。
引用官网的图例:
特征:
- zookeeper的数据机构是一种节点树的数据结构,zNode是基本的单位,znode是一种和unix文件系统相似的节点,可以往这个节点存储或向这个节点获取数据
- 通过客户端可以对znode进行数据操作,还可以注册watcher监控znode的改变
2、Zookeeper节点类型
- 持久节点(Persistent)
- 持久顺序节点(Persistent_Sequential)
- 临时节点(Ephemeral)
- 临时顺序节点(Ephemeral_Sequential)
3、Zookeeper环境搭建
下载zookeeper,官网链接,https://zookeeper.apache.org/releases.html#download,去官网找到对应的软件下载到本地
修改配置文件,${ZOOKEEPER_HOME}\conf
,找到zoo_sample.cfg文件,先备份一份,另外一份修改为zoo.cfg
解压后点击zkServer.cmd运行服务端:
4、Zookeeper基本使用
在cmd窗口或者直接在idea编辑器里的terminal输入命令:
zkCli.cmd -server 127.0.0.1:2181
输入命令help
查看帮助信息:
ZooKeeper -server host:port -client-configuration properties-file cmd args
addWatch [-m mode] path # optional mode is one of [PERSISTENT, PERSISTENT_RECURSIVE] - default is PERSISTENT_RECURSIVE
addauth scheme auth
close
config [-c] [-w] [-s]
connect host:port
create [-s] [-e] [-c] [-t ttl] path [data] [acl]
delete [-v version] path
deleteall path [-b batch size]
delquota [-n|-b|-N|-B] path
get [-s] [-w] path
getAcl [-s] path
getAllChildrenNumber path
getEphemerals path
history
listquota path
ls [-s] [-w] [-R] path
printwatches on|off
quit
reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*]
redo cmdno
removewatches path [-c|-d|-a] [-l]
set [-s] [-v version] path data
setAcl [-s] [-v version] [-R] path acl
setquota -n|-b|-N|-B val path
stat [-w] path
sync path
version
whoami
create [-s] [-e] [-c] [-t ttl] path [data] [acl]
,-s
表示顺序节点,-e
表示临时节点,若不指定表示持久节点,acl
是来进行权限控制的
[zk: 127.0.0.1:2181(CONNECTED) 1] create -s /zk-test 0
查看
[zk: 127.0.0.1:2181(CONNECTED) 4] ls /
[zk-test0000000000, zookeeper]
设置修改节点数据
set /zk-test 123
获取节点数据
get /zk-test
ps,zookeeper命令详情查看help帮助文档,也可以去官网看看文档
ok,然后java写个例子,进行watcher监听
package com.example.concurrent.zkSample;
import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;
/**
* <pre>
* Zookeeper 例子
* </pre>
*
* <pre>
* @author mazq
* 修改记录
* 修改后版本: 修改人: 修改日期: 2021/12/09 16:57 修改内容:
* </pre>
*/
public class ZookeeperSample {
public static void main(String[] args) {
ZkClient client = new ZkClient("localhost:2181");
client.setZkSerializer(new MyZkSerializer());
client.subscribeDataChanges("/zk-test", new IZkDataListener() {
@Override
public void handleDataChange(String dataPath, Object data) throws Exception {
System.out.println("监听到节点数据改变!");
}
@Override
public void handleDataDeleted(String dataPath) throws Exception {
System.out.println("监听到节点数据被删除了");
}
});
try {
Thread.sleep(1000 * 60 * 2);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
5、Zookeeper应用场景
Zookeeper有什么典型的应用场景:
- 注册中心(Dubbo)
- 命名服务
- Master选举
- 集群管理
- 分布式队列
- 分布式锁
6、Zookeeper分布式锁
Zookeeper适合用来做分布式锁,然后具体实现是利用什么原理?我们知道zookeeper是类似于unix的文件系统,文件系统我们也知道在一个文件夹下面,会有文件名称不能一致的特性的,也就是互斥的特性。同样zookeeper也有这个特性,在同个znode节点下面,子节点命名不能重复。所以利用这个特性可以来实现分布式锁
业务场景:在高并发的情况下面进行订单场景,这是一个典型的电商场景
自定义的Zookeeper序列化类:
package com.example.concurrent.zkSample;
import org.I0Itec.zkclient.exception.ZkMarshallingError;
import org.I0Itec.zkclient.serialize.ZkSerializer;
import java.io.UnsupportedEncodingException;
public class MyZkSerializer implements ZkSerializer {
private String charset = "UTF-8";
@Override
public byte[] serialize(Object o) throws ZkMarshallingError {
return String.valueOf(o).getBytes();
}
@Override
public Object deserialize(byte[] bytes) throws ZkMarshallingError {
try {
return new String(bytes , charset);
} catch (UnsupportedEncodingException e) {
throw new ZkMarshallingError();
}
}
}
订单编号生成器类,因为SimpleDateFormat是线程不安全的,所以还是要加上ThreadLocal
package com.example.concurrent.zkSample;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.atomic.AtomicInteger;
public class OrderCodeGenerator {
private static final String DATE_FORMAT = "yyyyMMddHHmmss";
private static AtomicInteger ai = new AtomicInteger(0);
private static int i = 0;
private static ThreadLocal<SimpleDateFormat> threadLocal = new ThreadLocal<SimpleDateFormat>() {
@Override
protected SimpleDateFormat initialValue() {
return new SimpleDateFormat(DATE_FORMAT);
}
};
public static DateFormat getDateFormat() {
return (DateFormat) threadLocal.get();
}
public static String generatorOrderCode() {
try {
return getDateFormat().format(new Date(System.currentTimeMillis()))
+ i++;
} finally {
threadLocal.remove();
}
}
}
pom.xml加上zookeeper客户端的配置:
<dependency>
<groupId>com.101tec</groupId>
<artifactId>zkclient</artifactId>
<version>0.10</version>
</dependency>
实现一个zookeeper分布式锁,思路是获取节点,这个是多线程竞争的,能获取到锁,也就是创建节点成功,就执行业务,其它抢不到锁的线程,阻塞等待,注册watcher监听锁是否释放了,释放了,取消注册watcher,继续抢锁
package com.example.concurrent.zkSample;
import lombok.extern.slf4j.Slf4j;
import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;
import org.I0Itec.zkclient.exception.ZkNodeExistsException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
@Slf4j
public class ZKDistributeLock implements Lock {
private String localPath;
private ZkClient zkClient;
ZKDistributeLock(String localPath) {
super();
this.localPath = localPath;
zkClient = new ZkClient("localhost:2181");
zkClient.setZkSerializer(new MyZkSerializer());
}
@Override
public void lock() {
while (!tryLock()) {
waitForLock();
}
}
private void waitForLock() {
// 创建countdownLatch协同
CountDownLatch countDownLatch = new CountDownLatch(1);
// 注册watcher监听
IZkDataListener listener = new IZkDataListener() {
@Override
public void handleDataChange(String path, Object o) throws Exception {
//System.out.println("zookeeper data has change!!!");
}
@Override
public void handleDataDeleted(String s) throws Exception {
// System.out.println("zookeeper data has delete!!!");
// 监听到锁释放了,释放线程
countDownLatch.countDown();
}
};
zkClient.subscribeDataChanges(localPath , listener);
// 线程等待
if (zkClient.exists(localPath)) {
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 取消注册
zkClient.unsubscribeDataChanges(localPath , listener);
}
@Override
public void unlock() {
zkClient.delete(localPath);
}
@Override
public boolean tryLock() {
try {
zkClient.createEphemeral(localPath);
} catch (ZkNodeExistsException e) {
return false;
}
return true;
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return false;
}
@Override
public void lockInterruptibly() throws InterruptedException {
}
@Override
public Condition newCondition() {
return null;
}
}
订单服务api
package com.example.concurrent.zkSample;
public interface OrderService {
void createOrder();
}
订单服务实现类,加上zookeeper分布式锁
package com.example.concurrent.zkSample;
import java.util.concurrent.locks.Lock;
public class OrderServiceInvoker implements OrderService{
@Override
public void createOrder() {
Lock zkLock = new ZKDistributeLock("/zk-test");
//Lock zkLock = new ZKDistributeImproveLock("/zk-test");
String orderCode = null;
try {
zkLock.lock();
orderCode = OrderCodeGenerator.generatorOrderCode();
} finally {
zkLock.unlock();
}
System.out.println(String.format("thread name : %s , orderCode : %s" ,
Thread.currentThread().getName(),
orderCode));
}
}
因为搭建分布式环境比较繁琐,所以这里使用juc里的并发协同工具类,CyclicBarrier模拟多线程并发的场景,模拟分布式环境的高并发场景
package com.example.concurrent.zkSample;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class ConcurrentDistributeTest {
public static void main(String[] args) {
// 多线程数
int threadSize = 30;
// 创建多线程循环屏障
CyclicBarrier cyclicBarrier = new CyclicBarrier(threadSize , ()->{
System.out.println("准备完成!");
}) ;
// 模拟分布式集群的场景
for (int i = 0 ; i < threadSize ; i ++) {
new Thread(()->{
OrderService orderService = new OrderServiceInvoker();
// 所有线程都等待
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
// 模拟并发请求
orderService.createOrder();
}).start();
}
}
}
跑多几次,没有发现订单号重复的情况,分布式锁还是有点效果的
thread name : Thread-6 , orderCode : 202112100945110
thread name : Thread-1 , orderCode : 202112100945111
thread name : Thread-13 , orderCode : 202112100945112
thread name : Thread-11 , orderCode : 202112100945113
thread name : Thread-14 , orderCode : 202112100945114
thread name : Thread-0 , orderCode : 202112100945115
thread name : Thread-8 , orderCode : 202112100945116
thread name : Thread-17 , orderCode : 202112100945117
thread name : Thread-10 , orderCode : 202112100945118
thread name : Thread-5 , orderCode : 202112100945119
thread name : Thread-2 , orderCode : 2021121009451110
thread name : Thread-16 , orderCode : 2021121009451111
thread name : Thread-19 , orderCode : 2021121009451112
thread name : Thread-4 , orderCode : 2021121009451113
thread name : Thread-18 , orderCode : 2021121009451114
thread name : Thread-3 , orderCode : 2021121009451115
thread name : Thread-9 , orderCode : 2021121009451116
thread name : Thread-12 , orderCode : 2021121009451117
thread name : Thread-15 , orderCode : 2021121009451118
thread name : Thread-7 , orderCode : 2021121009451219
注释加锁的代码,再加大并发数,模拟一下
package com.example.concurrent.zkSample;
import java.util.concurrent.locks.Lock;
public class OrderServiceInvoker implements OrderService{
@Override
public void createOrder() {
//Lock zkLock = new ZKDistributeLock("/zk-test");
//Lock zkLock = new ZKDistributeImproveLock("/zk-test");
String orderCode = null;
try {
//zkLock.lock();
orderCode = OrderCodeGenerator.generatorOrderCode();
} finally {
//zkLock.unlock();
}
System.out.println(String.format("thread name : %s , orderCode : %s" ,
Thread.currentThread().getName(),
orderCode));
}
}
跑多几次,发现出现订单号重复的情况,所以分布式锁是可以保证分布式环境的线程安全的
7、公平式Zookeeper分布式锁
上面例子是一种非公平锁的方式,一旦监听到锁释放了,所有线程都会去抢锁,所以容易出现“惊群效应”
:
- 巨大的服务器性能损耗
- 网络冲击
- 可能造成宕机
所以,需要改进分布式锁,改成一种公平锁的模式
- 公平锁:多个线程按照申请锁的顺序去获取锁,线程会在队列里排队,按照顺序去获取锁。只有队列第1个线程才能获取到锁,获取到锁之后,其它线程都会阻塞等待,等到持有锁的线程释放锁,其它线程才会被唤醒。
- 非公平锁:多个线程都会去竞争获取锁,获取不到就进入队列等待,竞争得到就直接获取锁;然后持有锁的线程释放锁之后,所有等待的线程就都会去竞争锁。
流程图:
代码改进:
package com.example.concurrent.zkSample;
import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;
import org.I0Itec.zkclient.exception.ZkNodeExistsException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
public class ZKDistributeImproveLock implements Lock {
private String localPath;
private ZkClient zkClient;
private String currentPath;
private String beforePath;
ZKDistributeImproveLock(String localPath) {
super();
this.localPath = localPath;
zkClient = new ZkClient("localhost:2181");
zkClient.setZkSerializer(new MyZkSerializer());
if (!zkClient.exists(localPath)) {
try {
this.zkClient.createPersistent(localPath);
} catch (ZkNodeExistsException e) {
}
}
}
@Override
public void lock() {
while (!tryLock()) {
waitForLock();
}
}
private void waitForLock() {
CountDownLatch countDownLatch = new CountDownLatch(1);
// 注册watcher
IZkDataListener listener = new IZkDataListener() {
@Override
public void handleDataChange(String dataPath, Object data) throws Exception {
}
@Override
public void handleDataDeleted(String dataPath) throws Exception {
// 监听到锁释放,唤醒线程
countDownLatch.countDown();
}
};
zkClient.subscribeDataChanges(beforePath, listener);
// 线程等待
if (zkClient.exists(beforePath)) {
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// 取消注册
zkClient.unsubscribeDataChanges(beforePath , listener);
}
@Override
public void unlock() {
zkClient.delete(this.currentPath);
}
@Override
public boolean tryLock() {
if (this.currentPath == null) {
currentPath = zkClient.createEphemeralSequential(localPath +"/" , "123");
}
// 获取Znode节点下面的所有子节点
List<String> children = zkClient.getChildren(localPath);
// 列表排序
Collections.sort(children);
if (currentPath.equals(localPath + "/" + children.get(0))) { // 当前节点是第1个节点
return true;
} else {
//得到当前的索引号
int index = children.indexOf(currentPath.substring(localPath.length() + 1));
//取到前一个
beforePath = localPath + "/" + children.get(index - 1);
}
return false;
}
@Override
public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
return false;
}
@Override
public void lockInterruptibly() throws InterruptedException {
}
@Override
public Condition newCondition() {
return null;
}
}
thread name : Thread-13 , orderCode : 202112100936140
thread name : Thread-3 , orderCode : 202112100936141
thread name : Thread-14 , orderCode : 202112100936142
thread name : Thread-16 , orderCode : 202112100936143
thread name : Thread-1 , orderCode : 202112100936144
thread name : Thread-9 , orderCode : 202112100936145
thread name : Thread-4 , orderCode : 202112100936146
thread name : Thread-5 , orderCode : 202112100936147
thread name : Thread-7 , orderCode : 202112100936148
thread name : Thread-2 , orderCode : 202112100936149
thread name : Thread-17 , orderCode : 2021121009361410
thread name : Thread-15 , orderCode : 2021121009361411
thread name : Thread-0 , orderCode : 2021121009361412
thread name : Thread-10 , orderCode : 2021121009361413
thread name : Thread-18 , orderCode : 2021121009361414
thread name : Thread-19 , orderCode : 2021121009361415
thread name : Thread-8 , orderCode : 2021121009361416
thread name : Thread-12 , orderCode : 2021121009361417
thread name : Thread-11 , orderCode : 2021121009361418
thread name : Thread-6 , orderCode : 2021121009361419
8、zookeeper和Redis锁对比?
Redis和Zookeeper都可以用来实现分布式锁,两者可以进行对比:
- 基于Redis实现分布式锁
- 实现比较复杂
- 存在死锁的可能
- 性能比较好,基于内存 ,而且保证的是高可用,redis优先保证的是AP(分布式CAP理论)
- 基于Zookeeper实现分布式锁
- 实现相对简单
- 可靠性高,因为zookeeper保证的是CP(分布式CAP理论)
- 性能相对较好 并发1~2万左右,并发太高,还是redis性能好
本博客代码可以在GitHub找到下载链接