中位数 对顶堆
题目描述
给出一个长度为
输入输出格式
输入格式:
第
第
输出格式:
共
输入输出样例
输入样例#1: 复制
7 1 3 5 7 9 11 6
输出样例#1: 复制
1 3 5 6
说明
对于
对于
对于
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 700005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}
ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }
/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n;
priority_queue<int, vector<int> >q1;
priority_queue<int, vector<int>, greater<int> >q2;
int main() {
//ios::sync_with_stdio(0);
rdint(n);
int x; rdint(x); q1.push(x); cout << x << endl;
for (int i = 2; i <= n; i++) {
rdint(x);
if (x > q1.top())q2.push(x);
else q1.push(x);
while (abs((int)q1.size() - (int)q2.size()) > 1) {
if ((int)q1.size() > (int)q2.size()) {
q2.push(q1.top()); q1.pop();
}
else {
q1.push(q2.top()); q2.pop();
}
}
if (i % 2) {
if ((int)q1.size() > (int)q2.size()) {
cout << q1.top() << endl;
}
else {
cout << q2.top() << endl;
}
}
}
return 0;
}