http://poj.org/problem?id=1014
Description
Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.
Input
Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000.
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.
Output
For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.".
Output a blank line after each test case.
Sample Input
1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0
Sample Output
Collection #1:
Can't be divided.
Collection #2:
Can be divided.
大致题意:
有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,使两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是(即没有物品了),这程序结束,总物品的总个数不超过20000
输出:每个测试用例占三行:
Collection #k: k为第几组测试用例
第二行:是否能分(具体形式见用例)
第三行:空白(必须注意,否则PE)
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
int dp[1010000],w[101],v[101];
int V,K=0;
void wpack(int w)
{
for(int i=w; i<=V; i++)
{
if(dp[i-w]+w>dp[i])
dp[i]=dp[i-w]+w;
}
}
void pack1(int w)
{
for(int i=V; i>=w; i--)
{
if(dp[i-w]+w>dp[i])
dp[i]=dp[i-w]+w;
}
}
void Mul(int w,int num)
{
if(w*num>=V)
{
wpack(w);
return ;
}
int k=1;
while(k<num)
{
pack1(k*w);
num-=k;
k=k*2;
}
pack1(num*w);
}
int main()
{
while(scanf("%d%d%d%d%d%d",&w[1],&w[2],&w[3],&w[4],&w[5],&w[6])!=EOF)
{
K++;
V=w[1]+w[2]+w[3]+w[4]+w[5]+w[6];
if(V==0) break;
V=w[1]*1+w[2]*2+w[3]*3+w[4]*4+w[5]*5+w[6]*6;
if(V%2==1)
{
printf("Collection #%d:\n",K);
printf("Can't be divided.\n\n");
}
else
{
V=V/2;
memset(dp,0,sizeof(dp));
for(int i=1; i<=6; i++)
{
Mul(i,w[i]);
}
if(dp[V]==V)
{
printf("Collection #%d:\n",K);
printf("Can be divided.\n\n");
}
else
{
printf("Collection #%d:\n",K);
printf("Can't be divided.\n\n");
}
}
}
return 0;
}