除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。
不一样的是,AdaDelta算法没有学习率这个超参数。 它通过使用有关自变量更新量平方的指数加权移动平均的项来替代RMSProp算法中的学习率。
AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度 g t \boldsymbol{g}_t gt按元素平方的指数加权移动平均变量 s t \boldsymbol{s}_t st。
- 在时间步0,它的所有元素被初始化为0。给定超参数 0 ≤ ρ < 1 0 \leq \rho < 1 0≤ρ<1(对应RMSProp算法中的 γ \gamma γ)
- 在时间步 t > 0 t>0 t>0,同RMSProp算法一样计算
s t ← ρ s t − 1 + ( 1 − ρ ) g t ⊙ g t . \boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. st←ρst−1+(1−ρ)gt⊙gt.
与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量 Δ x t \Delta\boldsymbol{x}_t Δxt,其元素同样在时间步0时被初始化为0。我们使用 Δ x t − 1 \Delta\boldsymbol{x}_{t-1} Δxt−1来计算自变量的变化量:
g t ′ ← Δ x t − 1 + ϵ s t + ϵ ⊙ g t , \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, gt′←st+ϵΔxt−1+ϵ ⊙gt,
其中 ϵ \epsilon ϵ是为了维持数值稳定性而添加的常数,如 1 0 − 5 10^{-5} 10−5。接着更新自变量:
x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. xt←xt−1−gt′.
最后,我们使用 Δ x t \Delta\boldsymbol{x}_t Δxt来记录自变量变化量 g t ′ \boldsymbol{g}'_t gt′按元素平方的指数加权移动平均:
Δ x t ← ρ Δ x t − 1 + ( 1 − ρ ) g t ′ ⊙ g t ′ . \Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. Δxt←ρΔxt−1+(1−ρ)gt′⊙gt′.
可以看到,如不考虑 ϵ \epsilon ϵ的影响,AdaDelta算法跟RMSProp算法的不同之处在于使用 Δ x t − 1 \sqrt{\Delta\boldsymbol{x}_{t-1}} Δxt−1 来替代学习率 η \eta η。
实现AdaDelta
AdaDelta算法需要对每个自变量维护两个状态变量,即 s t \boldsymbol{s}_t st和 Δ x t \Delta\boldsymbol{x}_t Δxt。
按AdaDelta算法中的公式实现该算法。
def get_data_ch7():
data = np.genfromtxt('data/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本5个特征)
%matplotlib inline
import torch
import sys
features, labels = get_data_ch7()
def init_adadelta_states():
s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
delta_w, delta_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
return ((s_w, delta_w), (s_b, delta_b))
def adadelta(params, states, hyperparams):
rho, eps = hyperparams['rho'], 1e-5
for p, (s, delta) in zip(params, states):
s[:] = rho * s + (1 - rho) * (p.grad.data**2)
g = p.grad.data * torch.sqrt((delta + eps) / (s + eps))
p.data -= g
delta[:] = rho * delta + (1 - rho) * g * g
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型
net, loss = linreg, squared_loss
w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
requires_grad=True)
b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)
def eval_loss():
return loss(net(features, w, b), labels).mean().item()
ls = [eval_loss()]
data_iter = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
for _ in range(num_epochs):
start = time.time()
for batch_i, (X, y) in enumerate(data_iter):
l = loss(net(X, w, b), y).mean() # 使用平均损失
# 梯度清零
if w.grad is not None:
w.grad.data.zero_()
b.grad.data.zero_()
l.backward()
optimizer_fn([w, b], states, hyperparams) # 迭代模型参数
if (batch_i + 1) * batch_size % 100 == 0:
ls.append(eval_loss()) # 每100个样本记录下当前训练误差
# 打印结果和作图
print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
set_figsize()
plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
plt.xlabel('epoch')
plt.ylabel('loss')
train_ch7(adadelta, init_adadelta_states(), {'rho': 0.9}, features, labels)
也可以使用pytorch内置的optim.Adadelta:
train_pytorch_ch7(torch.optim.Adadelta, {'rho': 0.9}, features, labels)