问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
样例说明
初始时,三个小球的位置分别为4, 6, 8。
一秒后,三个小球的位置分别为5, 7, 9。
两秒后,第三个小球碰到墙壁,速度反向,三个小球位置分别为6, 8, 10。
三秒后,第二个小球与第三个小球在位置9发生碰撞,速度反向(注意碰撞位置不一定为偶数),三个小球位置分别为7, 9, 9。
四秒后,第一个小球与第二个小球在位置8发生碰撞,速度反向,第三个小球碰到墙壁,速度反向,三个小球位置分别为8, 8, 10。
五秒后,三个小球的位置分别为7, 9, 9。
样例输入
10 22 30
14 12 16 6 10 2 8 20 18 4
样例输出
6 6 8 2 4 0 4 12 10 2
数据规模和约定
对于所有评测用例,1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
保证所有小球的初始位置互不相同且均为偶数。
#include<iostream>
#include<string>
#include<vector>
using namespace std;
int n,l,t;
int a[105][2];
int p[1005][2];
int main(){
cin>>n>>l>>t;
for(int i=0;i<n;i++){
cin>>a[i][0];
a[i][1]=1;
p[a[i][0]][0]++;
p[a[i][0]][1]=i;
}
while(t--){
for(int i=0;i<n;i++){
if(a[i][0]==0){
a[i][1]=1;
}else if(a[i][0]==l){
a[i][1]=-1;
}
p[a[i][0]][0]--;
a[i][0]+=a[i][1];
p[a[i][0]][0]++;
if(p[a[i][0]][0]>=2){
a[p[a[i][0]][1]][1]=a[i][1];
a[i][1]=0-a[i][1];
// cout<<"发生碰撞"<<i<<"为"<<a[i][0]<<endl;
}else{
p[a[i][0]][1]=i;
}
}
// for(int i=0;i<n;i++){
// cout<<"<"<<a[i][0]<<","<<a[i][1]<<"> ";
// }cout<<endl;
// for(int i=0;i<=l;i++){
// cout<<p[i][0]<<" ";
// }cout<<endl;
}
for(int i=0;i<n;i++){
cout<<a[i][0]<<" ";
}cout<<endl;
return 0;
}