发现了一个网站,里面讲的还不错,转载过来,复习知识的时候,再看看原滋原味的英文,舒服。

 Hyperbola(双曲线)_ide

A hyperbola (plural "hyperbolas"; Gray 1997, p. 45) is a conic section​ defined as the locus​ of all points Hyperbola(双曲线)_ide_02 in the ​plane​ the difference of whose distances Hyperbola(双曲线)_hive_03 and Hyperbola(双曲线)_ide_04 from two fixed points (the ​foci Hyperbola(双曲线)_hive_05 and Hyperbola(双曲线)_html_06) separated by a distance Hyperbola(双曲线)_html_07 is a given ​positive​ constant Hyperbola(双曲线)_html_08,

Hyperbola(双曲线)_ide_09


(1)


(Hilbert and Cohn-Vossen 1999, p. 3). Letting Hyperbola(双曲线)_html_10 fall on the left Hyperbola(双曲线)_html_11-intercept requires that

Hyperbola(双曲线)_html_12


(2)


so the constant is given by Hyperbola(双曲线)_ide_13, i.e., the distance between the Hyperbola(双曲线)_html_14-intercepts (left figure above). The hyperbola has the important property that a ray originating at a ​focus Hyperbola(双曲线)_html_15 reflects in such a way that the outgoing path lies along the line from the other ​focus through the point of intersection (right figure above).

The special case of the rectangular hyperbola​, corresponding to a hyperbola with eccentricity Hyperbola(双曲线)_hive_16, was first studied by Menaechmus. Euclid and Aristaeus wrote about the general hyperbola, but only studied one branch of it. The hyperbola was given its present name by Apollonius, who was the first to study both branches. The ​focus​ and conic section directrix were considered by Pappus (MacTutor Archive). The hyperbola is the shape of an orbit of a body on an escape trajectory (i.e., a body with positive energy), such as some comets, about a fixed mass, such as the sun.

Hyperbola(双曲线)_html_17

Hyperbola(双曲线)_html_18

The hyperbola can be constructed by connecting the free end Hyperbola(双曲线)_hive_19 of a rigid bar Hyperbola(双曲线)_ide_20, where Hyperbola(双曲线)_ide_21 is a ​focus​, and the other focus Hyperbola(双曲线)_ide_22 with a string Hyperbola(双曲线)_ide_23. As the bar Hyperbola(双曲线)_html_24 is rotated about Hyperbola(双曲线)_hive_25 and Hyperbola(双曲线)_hive_26 is kept taut against the bar (i.e., lies on the bar), the ​locus​ of Hyperbola(双曲线)_hive_27 is one branch of a hyperbola (left figure above; Wells 1991). A theorem of Apollonius states that for a line segment tangent to the hyperbola at a point Hyperbola(双曲线)_html_28 and ​intersecting​ the asymptotes at points Hyperbola(双曲线)_hive_29 and Hyperbola(双曲线)_hive_30, then Hyperbola(双曲线)_html_31 is constant, and Hyperbola(双曲线)_html_32 (right figure above; Wells 1991).

Hyperbola(双曲线)_html_33

Let the point Hyperbola(双曲线)_ide_34 on the hyperbola have Cartesian coordinates Hyperbola(双曲线)_ide_35, then the definition of the hyperbola Hyperbola(双曲线)_ide_36 gives

Hyperbola(双曲线)_hive_37


(3)


Rearranging and completing the square gives

Hyperbola(双曲线)_hive_38


(4)


and dividing both sides by Hyperbola(双曲线)_ide_39 results in

Hyperbola(双曲线)_hive_40


(5)


By analogy with the definition of the ellipse, define

Hyperbola(双曲线)_hive_41


(6)


so the equation for a hyperbola with semimajor axis Hyperbola(双曲线)_html_42 parallel to the ​x-axis​ and semiminor axis Hyperbola(双曲线)_html_43 parallel to the ​y-axis is given by

Hyperbola(双曲线)_hive_44


(7)


or, for a center at the point Hyperbola(双曲线)_html_45 instead of Hyperbola(双曲线)_html_46,

Hyperbola(双曲线)_html_47


(8)


Unlike the ellipse​, no points of the hyperbola actually lie on the semiminor axis​, but rather the ratio Hyperbola(双曲线)_ide_48 determines the vertical scaling of the hyperbola. The ​eccentricity Hyperbola(双曲线)_ide_49 of the hyperbola (which always satisfies e>1) is then defined as

Hyperbola(双曲线)_html_51


(9)


In the standard equation of the hyperbola, the center is located at Hyperbola(双曲线)_hive_52, the ​foci​ are at Hyperbola(双曲线)_hive_53, and the vertices are at Hyperbola(双曲线)_hive_54. The so-called ​asymptotes​(shown as the dashed lines in the above figures) can be found by substituting 0 for the 1 on the right side of the general equation (8),

Hyperbola(双曲线)_ide_55


(10)


and therefore have slopes Hyperbola(双曲线)_hive_56.

The special case Hyperbola(双曲线)_html_57 (the left diagram above) is known as a ​rectangular hyperbola​ because the asymptotes​ are perpendicular.

Hyperbola(双曲线)_ide_58

The hyperbola can also be defined as the locus​ of points whose distance from the focus Hyperbola(双曲线)_html_59 is proportional to the horizontal distance from a vertical line Hyperbola(双曲线)_ide_60 known as the ​conic section directrix​, where the ratio is >1. Letting Hyperbola(双曲线)_hive_62 be the ratio and Hyperbola(双曲线)_ide_63 the distance from the center at which the directrix lies, then

Hyperbola(双曲线)_ide_64

Hyperbola(双曲线)_html_65

Hyperbola(双曲线)_ide_66


(11)


Hyperbola(双曲线)_html_67

Hyperbola(双曲线)_hive_68

Hyperbola(双曲线)_html_69


(12)


where Hyperbola(双曲线)_html_70 is therefore simply the ​eccentricity Hyperbola(双曲线)_html_71.

Like noncircular ellipses​, hyperbolas have two distinct foci​ and two associated conic section directrices​, each conic section directrix​ being perpendicular to the line joining the two foci (Eves 1965, p. 275).

The focal parameter of the hyperbola is

Hyperbola(双曲线)_hive_72

Hyperbola(双曲线)_hive_73

Hyperbola(双曲线)_hive_74


(13)


Hyperbola(双曲线)_ide_75

Hyperbola(双曲线)_html_76

Hyperbola(双曲线)_ide_77


(14)


Hyperbola(双曲线)_html_78

Hyperbola(双曲线)_ide_79

Hyperbola(双曲线)_ide_80


(15)


In polar coordinates​, the equation of a hyperbola centered at the origin​ (i.e., with Hyperbola(双曲线)_ide_81) is

Hyperbola(双曲线)_ide_82


(16)


Hyperbola(双曲线)_hive_83

In polar coordinates​ centered at a focus,

Hyperbola(双曲线)_html_84


(17)


as illustrated above.

The two-center bipolar coordinates​ equation with origin at a focus is

Hyperbola(双曲线)_html_85


(18)


Parametric equations for the right branch of a hyperbola are given by

Hyperbola(双曲线)_html_86

Hyperbola(双曲线)_hive_87

Hyperbola(双曲线)_ide_88


(19)


Hyperbola(双曲线)_ide_89

Hyperbola(双曲线)_html_90

Hyperbola(双曲线)_hive_91


(20)


where Hyperbola(双曲线)_html_92 is the ​hyperbolic cosine​ and Hyperbola(双曲线)_html_93 is the ​hyperbolic sine, which ranges over the right branch of the hyperbola.

A parametric representation which ranges over both branches of the hyperbola is

Hyperbola(双曲线)_hive_94

Hyperbola(双曲线)_hive_95

Hyperbola(双曲线)_hive_96


(21)


Hyperbola(双曲线)_ide_97

Hyperbola(双曲线)_html_98

Hyperbola(双曲线)_hive_99


(22)


with Hyperbola(双曲线)_html_100 and discontinuities at Hyperbola(双曲线)_html_101. The ​arc length​, curvature​, and tangential angle for the above parametrization are

Hyperbola(双曲线)_hive_102

Hyperbola(双曲线)_ide_103

Hyperbola(双曲线)_hive_104


(23)


Hyperbola(双曲线)_ide_105

Hyperbola(双曲线)_ide_106

Hyperbola(双曲线)_ide_107


(24)


Hyperbola(双曲线)_html_108

Hyperbola(双曲线)_hive_109

Hyperbola(双曲线)_ide_110


(25)


where Hyperbola(双曲线)_ide_111 is an ​elliptic integral of the second kind.

The special affine curvature of the hyperbola is

Hyperbola(双曲线)_hive_112


(26)


The locus​ of the apex of a variable cone​ containing an ellipse​ fixed in three-space is a hyperbola through the foci​ of the ellipse​. In addition, the locus​ of the apex of a cone​ containing that hyperbola is the original ellipse​. Furthermore, the eccentricities​ of the ellipse and hyperbola are reciprocals.

REFERENCES:

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 199-200 and 218, 1987.

Casey, J. "The Hyperbola." Ch. 7 in A Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections, Containing an Account of Its Most Recent Extensions, with Numerous Examples, 2nd ed., rev. enl. Dublin: Hodges, Figgis, & Co., pp. 250-284, 1893.

Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 75-76, 1996.

Coxeter, H. S. M. "Conics" §8.4 in Introduction to Geometry, 2nd ed. New York: Wiley, pp. 115-119, 1969.

Eves, H. A Survey of Geometry, rev. ed. Boston, MA: Allyn & Bacon, 1965.

Fukagawa, H. and Pedoe, D. "The One Hyperbola." §5.2 in Japanese Temple Geometry Problems. Winnipeg, Manitoba, Canada: Charles Babbage Research Foundation, pp. 51 and 136-138, 1989.

Gardner, M. "Hyperbolas." Ch. 15 in Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, pp. 205-218, 1989.

Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, 1997.

Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 3-4, 1999.

Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 79-82, 1972.

Lockwood, E. H. "The Hyperbola." Ch. 3 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 24-33, 1967.

Loomis, E. S. "The Hyperbola." §2.3 in The Pythagorean Proposition: Its Demonstrations Analyzed and Classified and Bibliography of Sources for Data of the Four Kinds of "Proofs," 2nd ed. Reston, VA: National Council of Teachers of Mathematics, pp. 22-23, 1968.

MacTutor History of Mathematics Archive. "Hyperbola." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Hyperbola.html.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 106-109, 1991.

Yates, R. C. "Conics." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 36-56, 1952.