//---------------------------------【头文件、命名空间包含部分】----------------------------
// 描述:包含程序所使用的头文件和命名空间
//------------------------------------------------------------------------------------------------
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include <iostream>
using namespace cv;
using namespace std;
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main()
{
//【1】载入原始图片
//Mat srcImage1 = imread("5.png", 1);
//Mat srcImage2 = imread("6.bmp", 1);
Mat srcImage1 = imread("1.jpg", 1);
Mat srcImage2 = imread("2.jpg", 1);
if (!srcImage1.data || !srcImage2.data)
{
printf("读取图片错误,请确定目录下是否有imread函数指定的图片存在~! \n");
system("pause");
return false;
}
//imshow("src1", srcImage1);
//imshow("src2", srcImage2);
//【1--0】/*两张图片一块儿显示*/
Size imageSize = srcImage2.size();
int height = 240, width = 360;
Mat imageTwo = Mat(imageSize.height, imageSize.width * 2, CV_8UC3);
Rect imageLeft(0, 0, imageSize.width, imageSize.height);
Rect imageRight(imageSize.width, 0, imageSize.width, imageSize.height);
Mat imLeft = imageTwo(imageLeft);
Mat imRight = imageTwo(imageRight);
srcImage1.copyTo(imLeft);
srcImage2.copyTo(imRight);
if (imageTwo.data)
{
cv::imshow("image", imageTwo);
//cv::waitKey();
}
//【2】使用SURF算子检测关键点
int minHessian = 400;//SURF算法中的hessian阈值
SurfFeatureDetector detector(minHessian);//定义一个SurfFeatureDetector(SURF) 特征检测类对象
vector<KeyPoint> keypoints_object, keypoints_scene;//vector模板类,存放任意类型的动态数组
//【3】调用detect函数检测出SURF特征关键点,保存在vector容器中
detector.detect(srcImage1, keypoints_object);
detector.detect(srcImage2, keypoints_scene);
//【4】计算描述符(特征向量)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute(srcImage1, keypoints_object, descriptors_object);
extractor.compute(srcImage2, keypoints_scene, descriptors_scene);
//【5】使用FLANN匹配算子进行匹配
FlannBasedMatcher matcher;
vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;//最小距离和最大距离
//【6】计算出关键点之间距离的最大值和最小值
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf(">Max dist 最大距离 : %f \n", max_dist);
printf(">Min dist 最小距离 : %f \n", min_dist);
//【7】存下匹配距离小于3*min_dist的点对
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
//绘制出匹配到的关键点
Mat img_matches;
drawMatches(srcImage1, keypoints_object, srcImage2, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//定义两个局部变量
vector<Point2f> obj;
vector<Point2f> scene;
//从匹配成功的匹配对中获取关键点
for (unsigned int i = 0; i < good_matches.size(); i++)
{
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(obj, scene, CV_RANSAC);//计算透视变换
//从待测图片中获取角点
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0, 0);
obj_corners[1] = cvPoint(srcImage1.cols, 0);
obj_corners[2] = cvPoint(srcImage1.cols, srcImage1.rows);
obj_corners[3] = cvPoint(0, srcImage1.rows);
vector<Point2f> scene_corners(4);
//进行透视变换
perspectiveTransform(obj_corners, scene_corners, H);
//绘制出角点之间的直线
line(img_matches, scene_corners[0] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[1] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[1] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[2] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[2] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[3] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
line(img_matches, scene_corners[3] + Point2f(static_cast<float>(srcImage1.cols), 0), scene_corners[0] + Point2f(static_cast<float>(srcImage1.cols), 0), Scalar(255, 0, 123), 4);
//显示最终结果
imshow("效果图", img_matches);
waitKey(0);
return 0;
}
不同的匹配算法
//---------------------------------【头文件、命名空间包含部分】----------------------------
// 描述:包含程序所使用的头文件和命名空间
//------------------------------------------------------------------------------------------------
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/features2d/features2d.hpp>
using namespace cv;
using namespace std;
//--------------------------------------【main( )函数】-----------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main3()
{
//【1】载入图像、显示并转化为灰度图
Mat trainImage = imread("1.jpg"), trainImage_gray;
imshow("原始图", trainImage);
cvtColor(trainImage, trainImage_gray, CV_BGR2GRAY);
//【2】检测Surf关键点、提取训练图像描述符
vector<KeyPoint> train_keyPoint;
Mat trainDescriptor;
SurfFeatureDetector featureDetector(80);
featureDetector.detect(trainImage_gray, train_keyPoint);
SurfDescriptorExtractor featureExtractor;
featureExtractor.compute(trainImage_gray, train_keyPoint, trainDescriptor);
//【3】创建基于FLANN的描述符匹配对象
FlannBasedMatcher matcher;
vector<Mat> train_desc_collection(1, trainDescriptor);
matcher.add(train_desc_collection);
matcher.train();
//【4】创建视频对象、定义帧率
VideoCapture cap(0);
unsigned int frameCount = 0;//帧数
//【5】不断循环,直到q键被按下
while (char(waitKey(1)) != 'q')
{
//<1>参数设置
int64 time0 = getTickCount();
Mat testImage, testImage_gray;
cap >> testImage;//采集视频到testImage中
if (testImage.empty())
continue;
//<2>转化图像到灰度
cvtColor(testImage, testImage_gray, CV_BGR2GRAY);
//<3>检测S关键点、提取测试图像描述符
vector<KeyPoint> test_keyPoint;
Mat testDescriptor;
featureDetector.detect(testImage_gray, test_keyPoint);
featureExtractor.compute(testImage_gray, test_keyPoint, testDescriptor);
//<4>匹配训练和测试描述符
vector<vector<DMatch> > matches;
matcher.knnMatch(testDescriptor, matches, 2);
// <5>根据劳氏算法(Lowe's algorithm),得到优秀的匹配点
vector<DMatch> goodMatches;
for (unsigned int i = 0; i < matches.size(); i++)
{
if (matches[i][0].distance < 0.6 * matches[i][1].distance)
goodMatches.push_back(matches[i][0]);
}
//<6>绘制匹配点并显示窗口
Mat dstImage;
drawMatches(testImage, test_keyPoint, trainImage, train_keyPoint, goodMatches, dstImage);
imshow("匹配窗口", dstImage);
//<7>输出帧率信息
cout << "当前帧率为:" << getTickFrequency() / (getTickCount() - time0) << endl;
}
return 0;
}