Hadoop-2.6.0环境搭建精简极致指导

 

HopToad

欢迎关注微信公众号:HopToad

转载请标出处

1、     软件下载

从官网http://apache.fayea.com/hadoop/common/  下载hadoop

从oracle官网下载JDK 

http://www.oracle.com/technetwork/java/javase/downloads/index.html(1.8.25)

hadoop-example的jar用来简单测试

http://www.java2s.com/Code/Jar/h/Downloadhadoopexamples111jar.htm

2、     硬件准备

准备3~4台机器

本人这次是准备了3台虚拟机。

1台master,2个slave

 

3、     操作步骤

a)   安装64位操作系统(如REHL 6.5)

b)   设置主机名字(便于统筹规划)

192.168.1.200 master

192.168.1.201 slave1

192.168.1.202 slave2

将IP解析复制到每个机器的/etc/hosts中。

c)    设置ssh无密码访问(实现主节点到所有从节点即可)

a)        各个节点运行ssh-keygen -t rsa ,然后将~/.ssh/id_rsa.pub 文件中的内容都加入到master节点中的~/.ssh/authorized_keys 文件中。

 

d)  安装JDK

解压JDK包如下:

tar zxvfjdk-8u25-linux-x64.gz

编辑配置文件

vi/etc/profile

加入如下:

JAVA_HOME=/opt/jdk

CLASSPATH=.:$JAVA_HOME/lib.tools.jar

PATH=$JAVA_HOME/bin:$SCALA_HOME/bin:$PATH

exportJAVA_HOME CLASSPATH PATH

运行如下进行确认JDK安装

java-version

e)   安装Hadoop

a)  解压

tar -zxvfhadoop-2.6.0.tar.gz

b)  编辑配置文件

vi/etc/profile

HADOOP_HOME=/opt/hadoop

HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

PATH=$HADOOP_HOME/bin:$PATH

exportHADOOP_HOME HADOOP_CONF_DIR PATH

c)  配置文件生效

source/etc/profile

d)  修改core-site.xml

/opt/hadoop/etc/hadoop下的core-site.xml

如下:

<configuration>

 <property>

   <name>fs.defaultFS</name>

   <value>hdfs://master:9000</value>

   <description>NameNode URI.</description>

 </property>

 <property>

   <name>io.file.buffer.size</name>

   <value>131072</value>

   <description>Size of read/write buffer used inSequenceFiles.</description>

 </property>

 <property>

   <name>hadoop.tmp.dir</name>

   <value>/data/hadoop/tmp</value>

   <description>A base for other temporary directories.</description>

 </property>

</configuration>

 

e)  编辑hdfs-site.xml

如下:

<configuration>

 <property>

   <name>dfs.namenode.secondary.http-address</name>

   <value>master:50090</value>

   <description>The secondary namenode http server address andport.</description>

 </property>

 <property>

   <name>dfs.namenode.name.dir</name>

   <value>file:///data/dfs/name</value>

   <description>Path on the local filesystem where the NameNodestores the namespace and transactions logs persistently.</description>

 </property>

 <property>

   <name>dfs.datanode.data.dir</name>

   <value>file:///data/dfs/data</value>

   <description>Comma separated list of paths on the local filesystemof a DataNode where it should store its blocks.</description>

 </property>

 <property>

   <name>dfs.namenode.checkpoint.dir</name>

   <value>file:///data/dfs/namesecondary</value>

   <description>Determines where on the local filesystem the DFSsecondary name node should store the temporary images to merge. If this is acomma-delimited list of directories then the image is replicated in all of thedirectories for redundancy.</description>

 </property>

</configuration>

 

f)  编辑slaves文件

如下:

master

slave1

slave2

 

g)  启动hdfs

先格式化namenode

hdfs namenode –format

 启动dfs

设置/opt/hadoop/etc/hadoop/hadoop-env.sh文件中的JAVA变量。

start-dfs.sh

查看进程

jps

 主节点:[root@master sbin]# jps

2291 DataNode

2452SecondaryNameNode

2170 NameNode

2573 Jps

从节点:

[root@slave1.ssh]# jps

1841 DataNode

1917 Jps

 

h)  编辑yarn-site.xml

如下:

<configuration>

 <property>

   <name>yarn.resourcemanager.hostname</name>

<value>master</value>

<description>The hostname of theRM.</description>

 </property>

 <property>

   <name>yarn.nodemanager.aux-services</name>

   <value>mapreduce_shuffle</value>

   <description>Shuffle service that needs to be set for Map Reduceapplications.</description>

 </property>

</configuration>

 

i)  编辑mapred-site.xml

如下:

<configuration>

  <property>

   <name>mapreduce.framework.name</name>

<value>yarn</value>

<description>Theruntime framework for executing MapReduce jobs. Can be one of local, classic oryarn.</description>

  </property>

  <property>

   <name>mapreduce.jobhistory.address</name>

    <value>master:10020</value>

    <description>MapReduce JobHistoryServer IPC host:port</description>

  </property>

  <property>

   <name>mapreduce.jobhistory.webapp.address</name>

    <value>master:19888</value>

    <description>MapReduce JobHistoryServer Web UI host:port</description>

  </property>

</configuration>

 

 

 

 

j)  启动yarn资源管理

执行如下:

start-yarn.sh

执行jps进行查看。

完毕。

Jps查看

主节点:

[root@master sbin]# jps

2720 NodeManager

2291 DataNode

2452 SecondaryNameNode

2953 Jps

2170 NameNode

2621 ResourceManager

从节点:

[root@slave1 .ssh]# jps

1841 DataNode

2082 Jps

1958 NodeManager

4、     简单测试

如:在master运行如下命令:

#hadoop jar hadoop-examples-1.2.1.jar pi 1 10

该命令测试分布式计算性能,计算pi的值。第1个10指的是要运行10次map任务
第2个数字指的是每个map任务拆分多少个job.

可以通过

IE进行图形化观察

如下图1:

 

 Hadoop-2.6.0环境搭建精简极致指导_虚拟机