题目链接:点击打开链接

题意:

给定n座山

下面n个数字表示n座山的高度


若这座山u合法,则要满足:

1、若u的左边存在比u高的山,设v是u左边距离u最近的且严格比u高的山,在[v,u]之间至少有一座山x,使得x和u的高度差>=15000

2、右边也同理。

同时满足1、2的情况则算合法。

问:

输出所有合法的山。

思路:

求距离某个点最近的山就是维护一个单调栈,然后给山的高度求一个RMQ。

写写写。。。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
template <class T>
inline bool rd(T &ret) {
    char c; int sgn;
    if(c=getchar(),c==EOF) return 0;
    while(c!='-'&&(c<'0'||c>'9')) c=getchar();
    sgn=(c=='-')?-1:1;
    ret=(c=='-')?0:(c-'0');
    while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
    ret*=sgn;
    return 1;
}
template <class T>
inline void pt(T x) {
    if (x <0) {
        putchar('-');
        x = -x;
    }
    if(x>9) pt(x/10);
    putchar(x%10+'0');
}
using namespace std;
typedef long long ll;
const int N = 100050;
int d[N*2][20];
void RMQ_init(int *A, int n) {
	for (int i = 1; i <= n; ++i)
		d[i][0] = A[i];
	for (int j = 1; (1 << j) <= n; ++j)
		for (int i = 1; i + j - 1 <= n; ++i) {
			d[i][j] = min(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]);
		}
}
int RMQ(int L, int R) {
	int k = 0;
	while ((1 << (k + 1)) <= R - L + 1)
		++k;
	return min(d[L][k], d[R - (1 << k) + 1][k]);
}
int n, h[N], Stack[N], top;
int lh[N], rh[N];
void work(){
    for(int i = 1; i <= n; i++)rd(h[i]);
    top = 0;
    for(int i = 1; i <= n; i++) {
        while(top && h[ Stack[top-1] ] <= h[i])top--;
        if(top) lh[i] = Stack[top-1];
        else lh[i] = 0;
        Stack[top++] = i;
    }
    top = 0;
    for(int i = n; i; i--){
        while(top && h[ Stack[top-1] ]<= h[i])top--;
        if(top) rh[i] = Stack[top-1];
        else rh[i] = 0;
        Stack[top++] = i;
    }
}
const int hehe = 150000;
vector<int>ans;
int main(){
	while(cin>>n){
        work();
        RMQ_init(h, n);
        ans.clear();
        for(int i =1; i <= n; i++){
            if(lh[i] == 0 && rh[i] == 0) ans.push_back(i);
            else if(lh[i] == 0){
                int v = RMQ(i, rh[i]);
                if(h[i] - v >= hehe)
                    ans.push_back(i);
            }
            else if(rh[i] == 0){
                int v = RMQ(lh[i], i);
                if(h[i] - v >= hehe)
                     ans.push_back(i);
            }
            else {
                int u = RMQ(lh[i], i), v = RMQ(i, rh[i]);
                int maxx = max(u, v);
                if(h[i] - maxx >= hehe)
                     ans.push_back(i);
            }
        }
        for(int i = 0; i < ans.size(); i++){
            pt(ans[i]);
            if(i==ans.size()-1)puts("");
            else putchar(' ');
        }
    }
	return 0;
}