二、遗传算法简介

1 引言

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_matlab

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_02

2 遗传算法理论

2.1 遗传算法的生物学基础

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_算法_03

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_04

2.2 遗传算法的理论基础

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_遗传算法_05

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_matlab_06

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_算法_07

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_08

2.3 遗传算法的基本概念

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_遗传算法_09

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_10

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_机器学习_11

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_机器学习_12

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_算法_13

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_14

2.4 标准的遗传算法

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_15

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_16

2.5 遗传算法的特点

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_17

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_遗传算法_18

2.6 遗传算法的改进方向

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_19

3 遗传算法流程

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_20

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_机器学习_21

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_遗传算法_22

4 关键参数说明

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_23

三、案例及完整源代码

1 案例

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_matlab_24

2 完整代码

%%%%%%%%%%%%%%%%%%%%标准遗传算法求函数极值%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%初始化参数%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
NP=50; %种群数量
L=20; %二进制数串长度
Pc=0.8; %交叉率
Pm=0.1; %变异率
G=100; %最大遗传代数
Xs=10; %上限
Xx=0; %下限
f=randi([0,1],NP,L); %随机获得初始种群
%%%%%%%%%%%%%%%%%%%%%%%%%遗传算法循环%%%%%%%%%%%%%%%%%%%%%%%%
for k=1:G
%%%%%%%%%%%%将二进制解码为定义域范围内十进制%%%%%%%%%%%%%%
for i=1:NP
U=f(i,:);
m=0;
for j=1:L
m=U(j)*2^(j-1)+m;
end
x(i)=Xx+m*(Xs-Xx)/(2^L-1);
Fit(i)= func1(x(i));
end
maxFit=max(Fit); %最大值
minFit=min(Fit); %最小值
rr=find(Fit==maxFit);
fBest=f(rr(1,1),:); %历代最优个体
xBest=x(rr(1,1));
Fit=(Fit-minFit)/(maxFit-minFit); %归一化适应度值
%%%%%%%%%%%%%%%%%%基于轮盘赌的复制操作%%%%%%%%%%%%%%%%%%%
sum_Fit=sum(Fit);
fitvalue=Fit./sum_Fit;
fitvalue=cumsum(fitvalue);
ms=sort(rand(NP,1));
fiti=1;
newi=1;
while newi<=NP
if (ms(newi))<fitvalue(fiti)
nf(newi,:)=f(fiti,:);
newi=newi+1;
else
fiti=fiti+1;
end
end
%%%%%%%%%%%%%%%%%%%%%%基于概率的交叉操作%%%%%%%%%%%%%%%%%%
for i=1:2:NP
p=rand;
if p<Pc
q=randi([0,1],1,L);
for j=1:L
if q(j)==1;
temp=nf(i+1,j);
nf(i+1,j)=nf(i,j);
nf(i,j)=temp;
end
end
end
end
%%%%%%%%%%%%%%%%%%%基于概率的变异操作%%%%%%%%%%%%%%%%%%%%%%%
i=1;
while i<=round(NP*Pm)
h=randi([1,NP],1,1); %随机选取一个需要变异的染色体
for j=1:round(L*Pm)
g=randi([1,L],1,1); %随机需要变异的基因数
nf(h,g)=~nf(h,g);
end
i=i+1;
end
f=nf;
f(1,:)=fBest; %保留最优个体在新种群中
trace(k)=maxFit; %历代最优适应度
end
xBest; %最优个体
figure
plot(trace)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')


%%%%%%%%%%%%%%%%%%%%%%%%%适应度函数%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function result=func1(x)
fit= x+10*sin(5*x)+7*cos(4*x);
result=fit;

四、解题过程及运行结果

1 解题过程

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_25

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_26

2 运行结果

【优化求解】基于matlab遗传算法求解函数极值问题【含Matlab源码 1198期】_参考文献_27

五、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

《智能优化算法及其MATLAB实例(第2版)》包子阳 余继周 杨杉著 电子工业出版社