第1章 Pandas基础_迭代

第1章 Pandas基础
import pandas as pd
import numpy as np

查看Pandas版本

pd.__version__
'1.0.3'

一、文件读取与写入

1. 读取

(a)csv格式

df = pd.read_csv('data/table.csv')
df.head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
1 S_1 C_1 1102 F street_2 192 73 32.5 B+
2 S_1 C_1 1103 M street_2 186 82 87.2 B+
3 S_1 C_1 1104 F street_2 167 81 80.4 B-
4 S_1 C_1 1105 F street_4 159 64 84.8 B+

(b)txt格式

df_txt = pd.read_table('data/table.txt') #可设置sep分隔符参数
df_txt
col1 col2 col3 col4
0 2 a 1.4 apple
1 3 b 3.4 banana
2 6 c 2.5 orange
3 5 d 3.2 lemon

(c)xls或xlsx格式

#需要安装xlrd包
df_excel = pd.read_excel('data/table.xlsx')
df_excel.head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
1 S_1 C_1 1102 F street_2 192 73 32.5 B+
2 S_1 C_1 1103 M street_2 186 82 87.2 B+
3 S_1 C_1 1104 F street_2 167 81 80.4 B-
4 S_1 C_1 1105 F street_4 159 64 84.8 B+

2. 写入

(a)csv格式

df.to_csv('data/new_table.csv')
#df.to_csv('data/new_table.csv', index=False) #保存时除去行索引

(b)xls或xlsx格式

#需要安装openpyxl
df.to_excel('data/new_table2.xlsx', sheet_name='Sheet1')

二、基本数据结构

1. Series

(a)创建一个Series

对于一个Series,其中最常用的属性为值(values),索引(index),名字(name),类型(dtype)

s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'],name='这是一个Series',dtype='float64')
s
a   -0.152799
b   -1.208334
c    0.668842
d    1.547519
e    0.309276
Name: 这是一个Series, dtype: float64

(b)访问Series属性

s.values
array([-0.15279875, -1.20833379,  0.6688421 ,  1.54751933,  0.30927643])
s.name
'这是一个Series'
s.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
s.dtype
dtype('float64')

(c)取出某一个元素

将在第2章详细讨论索引的应用,这里先大致了解

s['a']
-0.15279874545981778

(d)调用方法

s.mean()
0.23290106551625706

Series有相当多的方法可以调用:

print([attr for attr in dir(s) if not attr.startswith('_')])
['T', 'a', 'abs', 'add', 'add_prefix', 'add_suffix', 'agg', 'aggregate', 'align', 'all', 'any', 'append', 'apply', 'argmax', 'argmin', 'argsort', 'array', 'asfreq', 'asof', 'astype', 'at', 'at_time', 'attrs', 'autocorr', 'axes', 'b', 'between', 'between_time', 'bfill', 'bool', 'c', 'clip', 'combine', 'combine_first', 'convert_dtypes', 'copy', 'corr', 'count', 'cov', 'cummax', 'cummin', 'cumprod', 'cumsum', 'd', 'describe', 'diff', 'div', 'divide', 'divmod', 'dot', 'drop', 'drop_duplicates', 'droplevel', 'dropna', 'dtype', 'dtypes', 'duplicated', 'e', 'empty', 'eq', 'equals', 'ewm', 'expanding', 'explode', 'factorize', 'ffill', 'fillna', 'filter', 'first', 'first_valid_index', 'floordiv', 'ge', 'get', 'groupby', 'gt', 'hasnans', 'head', 'hist', 'iat', 'idxmax', 'idxmin', 'iloc', 'index', 'infer_objects', 'interpolate', 'is_monotonic', 'is_monotonic_decreasing', 'is_monotonic_increasing', 'is_unique', 'isin', 'isna', 'isnull', 'item', 'items', 'iteritems', 'keys', 'kurt', 'kurtosis', 'last', 'last_valid_index', 'le', 'loc', 'lt', 'mad', 'map', 'mask', 'max', 'mean', 'median', 'memory_usage', 'min', 'mod', 'mode', 'mul', 'multiply', 'name', 'nbytes', 'ndim', 'ne', 'nlargest', 'notna', 'notnull', 'nsmallest', 'nunique', 'pct_change', 'pipe', 'plot', 'pop', 'pow', 'prod', 'product', 'quantile', 'radd', 'rank', 'ravel', 'rdiv', 'rdivmod', 'reindex', 'reindex_like', 'rename', 'rename_axis', 'reorder_levels', 'repeat', 'replace', 'resample', 'reset_index', 'rfloordiv', 'rmod', 'rmul', 'rolling', 'round', 'rpow', 'rsub', 'rtruediv', 'sample', 'searchsorted', 'sem', 'set_axis', 'shape', 'shift', 'size', 'skew', 'slice_shift', 'sort_index', 'sort_values', 'squeeze', 'std', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'tail', 'take', 'to_clipboard', 'to_csv', 'to_dict', 'to_excel', 'to_frame', 'to_hdf', 'to_json', 'to_latex', 'to_list', 'to_markdown', 'to_numpy', 'to_period', 'to_pickle', 'to_sql', 'to_string', 'to_timestamp', 'to_xarray', 'transform', 'transpose', 'truediv', 'truncate', 'tshift', 'tz_convert', 'tz_localize', 'unique', 'unstack', 'update', 'value_counts', 'values', 'var', 'view', 'where', 'xs']

2. DataFrame

(a)创建一个DataFrame

df = pd.DataFrame({'col1':list('abcde'),'col2':range(5,10),'col3':[1.3,2.5,3.6,4.6,5.8]},
                 index=list('一二三四五'))
df
col1 col2 col3
a 5 1.3
b 6 2.5
c 7 3.6
d 8 4.6
e 9 5.8

(b)从DataFrame取出一列为Series

df['col1']
一    a
二    b
三    c
四    d
五    e
Name: col1, dtype: object
type(df)
pandas.core.frame.DataFrame
type(df['col1'])
pandas.core.series.Series

(c)修改行或列名

df.rename(index={'一':'one'},columns={'col1':'new_col1'})
new_col1 col2 col3
one a 5 1.3
b 6 2.5
c 7 3.6
d 8 4.6
e 9 5.8

(d)调用属性和方法

df.index
Index(['一', '二', '三', '四', '五'], dtype='object')
df.columns
Index(['col1', 'col2', 'col3'], dtype='object')
df.values
array([['a', 5, 1.3],
       ['b', 6, 2.5],
       ['c', 7, 3.6],
       ['d', 8, 4.6],
       ['e', 9, 5.8]], dtype=object)
df.shape
(5, 3)
df.mean() #本质上是一种Aggregation操作,将在第3章详细介绍
col2    7.00
col3    3.56
dtype: float64

(e)索引对齐特性

这是Pandas中非常强大的特性,不理解这一特性有时就会造成一些麻烦

df1 = pd.DataFrame({'A':[1,2,3]},index=[1,2,3])
df2 = pd.DataFrame({'A':[1,2,3]},index=[3,1,2])
df1-df2 #由于索引对齐,因此结果不是0
A
1 -1
2 -1
3 2

(f)列的删除与添加

对于删除而言,可以使用drop函数或del或pop

df.drop(index='五',columns='col1') #设置inplace=True后会直接在原DataFrame中改动
col2 col3
5 1.3
6 2.5
7 3.6
8 4.6
df['col1']=[1,2,3,4,5]
del df['col1']
df
col2 col3
5 1.3
6 2.5
7 3.6
8 4.6
9 5.8

pop方法直接在原来的DataFrame上操作,且返回被删除的列,与python中的pop函数类似

df['col1']=[1,2,3,4,5]
df.pop('col1')
一    1
二    2
三    3
四    4
五    5
Name: col1, dtype: int64
df
col2 col3
5 1.3
6 2.5
7 3.6
8 4.6
9 5.8

可以直接增加新的列,也可以使用assign方法

df1['B']=list('abc')
df1
A B
1 1 a
2 2 b
3 3 c
df1.assign(C=pd.Series(list('def')))
#思考:为什么会出现NaN?(提示:索引对齐)assign左右两边的索引不一样,请问结果的索引谁说了算?
A B C
1 1 a e
2 2 b f
3 3 c NaN

但assign方法不会对原DataFrame做修改

df1
A B
1 1 a
2 2 b
3 3 c

(g)根据类型选择列

df.select_dtypes(include=['number']).head()
col2 col3
5 1.3
6 2.5
7 3.6
8 4.6
9 5.8
df.select_dtypes(include=['float']).head()
col3
1.3
2.5
3.6
4.6
5.8

(h)将Series转换为DataFrame

s = df.mean()
s.name='to_DataFrame'
s
col2    7.00
col3    3.56
Name: to_DataFrame, dtype: float64
s.to_frame()
to_DataFrame
col2 7.00
col3 3.56

使用T符号可以转置

s.to_frame().T
col2 col3
to_DataFrame 7.0 3.56

三、常用基本函数

从下面开始,包括后面所有章节,我们都会用到这份虚拟的数据集

df = pd.read_csv('data/table.csv')

1. head和tail

df.head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
1 S_1 C_1 1102 F street_2 192 73 32.5 B+
2 S_1 C_1 1103 M street_2 186 82 87.2 B+
3 S_1 C_1 1104 F street_2 167 81 80.4 B-
4 S_1 C_1 1105 F street_4 159 64 84.8 B+
df.tail()
School Class ID Gender Address Height Weight Math Physics
30 S_2 C_4 2401 F street_2 192 62 45.3 A
31 S_2 C_4 2402 M street_7 166 82 48.7 B
32 S_2 C_4 2403 F street_6 158 60 59.7 B+
33 S_2 C_4 2404 F street_2 160 84 67.7 B
34 S_2 C_4 2405 F street_6 193 54 47.6 B

可以指定n参数显示多少行

df.head(3)
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
1 S_1 C_1 1102 F street_2 192 73 32.5 B+
2 S_1 C_1 1103 M street_2 186 82 87.2 B+

2. unique和nunique

nunique显示有多少个唯一值

df['Physics'].nunique()
7

unique显示所有的唯一值

df['Physics'].unique()
array(['A+', 'B+', 'B-', 'A-', 'B', 'A', 'C'], dtype=object)

3. count和value_counts

count返回非缺失值元素个数

df['Physics'].count()
35

value_counts返回每个元素有多少个

df['Physics'].value_counts()
B+    9
B     8
B-    6
A     4
A+    3
A-    3
C     2
Name: Physics, dtype: int64

4. describe和info

info函数返回有哪些列、有多少非缺失值、每列的类型

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35 entries, 0 to 34
Data columns (total 9 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   School   35 non-null     object 
 1   Class    35 non-null     object 
 2   ID       35 non-null     int64  
 3   Gender   35 non-null     object 
 4   Address  35 non-null     object 
 5   Height   35 non-null     int64  
 6   Weight   35 non-null     int64  
 7   Math     35 non-null     float64
 8   Physics  35 non-null     object 
dtypes: float64(1), int64(3), object(5)
memory usage: 2.6+ KB

describe默认统计数值型数据的各个统计量

df.describe()
ID Height Weight Math
count 35.00000 35.000000 35.000000 35.000000
mean 1803.00000 174.142857 74.657143 61.351429
std 536.87741 13.541098 12.895377 19.915164
min 1101.00000 155.000000 53.000000 31.500000
25% 1204.50000 161.000000 63.000000 47.400000
50% 2103.00000 173.000000 74.000000 61.700000
75% 2301.50000 187.500000 82.000000 77.100000
max 2405.00000 195.000000 100.000000 97.000000

可以自行选择分位数

df.describe(percentiles=[.05, .25, .75, .95])
ID Height Weight Math
count 35.00000 35.000000 35.000000 35.000000
mean 1803.00000 174.142857 74.657143 61.351429
std 536.87741 13.541098 12.895377 19.915164
min 1101.00000 155.000000 53.000000 31.500000
5% 1102.70000 157.000000 56.100000 32.640000
25% 1204.50000 161.000000 63.000000 47.400000
50% 2103.00000 173.000000 74.000000 61.700000
75% 2301.50000 187.500000 82.000000 77.100000
95% 2403.30000 193.300000 97.600000 90.040000
max 2405.00000 195.000000 100.000000 97.000000

对于非数值型也可以用describe函数

df['Physics'].describe()
count     35
unique     7
top       B+
freq       9
Name: Physics, dtype: object

5. idxmax和nlargest

idxmax函数返回最大值所在索引,在某些情况下特别适用,idxmin功能类似

df['Math'].idxmax()
5

nlargest函数返回前几个大的元素值,nsmallest功能类似

df['Math'].nlargest(3)
5     97.0
28    95.5
11    87.7
Name: Math, dtype: float64

6. clip和replace

clip和replace是两类替换函数

clip是对超过或者低于某些值的数进行截断

df['Math'].head()
0    34.0
1    32.5
2    87.2
3    80.4
4    84.8
Name: Math, dtype: float64
df['Math'].clip(33,80).head()
0    34.0
1    33.0
2    80.0
3    80.0
4    80.0
Name: Math, dtype: float64
df['Math'].mad() 
16.924244897959188

replace是对某些值进行替换

df['Address'].head()
0    street_1
1    street_2
2    street_2
3    street_2
4    street_4
Name: Address, dtype: object
df['Address'].replace(['street_1','street_2'],['one','two']).head()
0         one
1         two
2         two
3         two
4    street_4
Name: Address, dtype: object

通过字典,可以直接在表中修改

df.replace({'Address':{'street_1':'one','street_2':'two'}}).head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M one 173 63 34.0 A+
1 S_1 C_1 1102 F two 192 73 32.5 B+
2 S_1 C_1 1103 M two 186 82 87.2 B+
3 S_1 C_1 1104 F two 167 81 80.4 B-
4 S_1 C_1 1105 F street_4 159 64 84.8 B+

7. apply函数

apply是一个自由度很高的函数,在第3章我们还要提到

对于Series,它可以迭代每一列的值操作:

df['Math'].apply(lambda x:str(x)+'!').head() #可以使用lambda表达式,也可以使用函数
0    34.0!
1    32.5!
2    87.2!
3    80.4!
4    84.8!
Name: Math, dtype: object

对于DataFrame,它在默认axis=0下可以迭代每一个列操作:

df.apply(lambda x:x.apply(lambda x:str(x)+'!')).head() #这是一个稍显复杂的例子,有利于理解apply的功能
School Class ID Gender Address Height Weight Math Physics
0 S_1! C_1! 1101! M! street_1! 173! 63! 34.0! A+!
1 S_1! C_1! 1102! F! street_2! 192! 73! 32.5! B+!
2 S_1! C_1! 1103! M! street_2! 186! 82! 87.2! B+!
3 S_1! C_1! 1104! F! street_2! 167! 81! 80.4! B-!
4 S_1! C_1! 1105! F! street_4! 159! 64! 84.8! B+!

Pandas中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理

四、排序

1. 索引排序

df.set_index('Math').head() #set_index函数可以设置索引,将在下一章详细介绍
School Class ID Gender Address Height Weight Physics
Math
34.0 S_1 C_1 1101 M street_1 173 63 A+
32.5 S_1 C_1 1102 F street_2 192 73 B+
87.2 S_1 C_1 1103 M street_2 186 82 B+
80.4 S_1 C_1 1104 F street_2 167 81 B-
84.8 S_1 C_1 1105 F street_4 159 64 B+
df.set_index('Math').sort_index().head() #可以设置ascending参数,默认为升序,True
School Class ID Gender Address Height Weight Physics
Math
31.5 S_1 C_3 1301 M street_4 161 68 B+
32.5 S_1 C_1 1102 F street_2 192 73 B+
32.7 S_2 C_3 2302 M street_5 171 88 A
33.8 S_1 C_2 1204 F street_5 162 63 B
34.0 S_1 C_1 1101 M street_1 173 63 A+

2. 值排序

df.sort_values(by='Class').head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
19 S_2 C_1 2105 M street_4 170 81 34.2 A
18 S_2 C_1 2104 F street_5 159 97 72.2 B+
16 S_2 C_1 2102 F street_6 161 61 50.6 B+
15 S_2 C_1 2101 M street_7 174 84 83.3 C

多个值排序,即先对第一层排,在第一层相同的情况下对第二层排序

df.sort_values(by=['Address','Height']).head()
School Class ID Gender Address Height Weight Math Physics
0 S_1 C_1 1101 M street_1 173 63 34.0 A+
11 S_1 C_3 1302 F street_1 175 57 87.7 A-
23 S_2 C_2 2204 M street_1 175 74 47.2 B-
33 S_2 C_4 2404 F street_2 160 84 67.7 B
3 S_1 C_1 1104 F street_2 167 81 80.4 B-

五、问题与练习

1. 问题

【问题一】 Series和DataFrame有哪些常见属性和方法?

【问题二】 value_counts会统计缺失值吗?

【问题三】 如果有多个索引同时取到最大值,idxmax会返回所有这些索引吗?如果不会,那么怎么返回这些索引?

【问题四】 在常用函数一节中,由于一些函数的功能比较简单,因此没有列入,现在将它们列在下面,请分别说明它们的用途并尝试使用。

sum/mean/median/mad/min/max/abs/std/var/quantile/cummax/cumsum/cumprod

【问题五】 df.mean(axis=1)是什么意思?它与df.mean()的结果一样吗?问题四提到的函数也有axis参数吗?怎么使用?

【问题六】 对值进行排序后,相同的值次序由什么决定?

【问题七】 Pandas中为各类基础运算也定义了函数,比如s1.add(s2)表示两个Series相加,但既然已经有了'+',是不是多此一举?

【问题八】 如果DataFrame某一列的元素是numpy数组,那么将其保存到csv在读取后就会变成字符串,怎么解决?

2. 练习

【练习一】 现有一份关于美剧《权力的游戏》剧本的数据集,请解决以下问题:

(a)在所有的数据中,一共出现了多少人物?

(b)以单元格计数(即简单把一个单元格视作一句),谁说了最多的话?

(c)以单词计数,谁说了最多的单词?(不是单句单词最多,是指每人说过单词的总数最多,为了简便,只以空格为单词分界点,不考虑其他情况)

pd.read_csv('data/Game_of_Thrones_Script.csv').head()
Release Date Season Episode Episode Title Name Sentence
0 2011/4/17 Season 1 Episode 1 Winter is Coming waymar royce What do you expect? They're savages. One lot s...
1 2011/4/17 Season 1 Episode 1 Winter is Coming will I've never seen wildlings do a thing like this...
2 2011/4/17 Season 1 Episode 1 Winter is Coming waymar royce How close did you get?
3 2011/4/17 Season 1 Episode 1 Winter is Coming will Close as any man would.
4 2011/4/17 Season 1 Episode 1 Winter is Coming gared We should head back to the wall.

【练习二】现有一份关于科比的投篮数据集,请解决如下问题:

(a)哪种action_type和combined_shot_type的组合是最多的?

(b)在所有被记录的game_id中,遭遇到最多的opponent是一个支?(由于一场比赛会有许多次投篮,但对阵的对手只有一个,本题相当 于问科比和哪个队交锋次数最多)

pd.read_csv('data/Kobe_data.csv',index_col='shot_id').head()
#index_col的作用是将某一列作为行索引
action_type combined_shot_type game_event_id game_id lat loc_x loc_y lon minutes_remaining period ... shot_made_flag shot_type shot_zone_area shot_zone_basic shot_zone_range team_id team_name game_date matchup opponent
shot_id
1 Jump Shot Jump Shot 10 20000012 33.9723 167 72 -118.1028 10 1 ... NaN 2PT Field Goal Right Side(R) Mid-Range 16-24 ft. 1610612747 Los Angeles Lakers 2000/10/31 LAL @ POR POR
2 Jump Shot Jump Shot 12 20000012 34.0443 -157 0 -118.4268 10 1 ... 0.0 2PT Field Goal Left Side(L) Mid-Range 8-16 ft. 1610612747 Los Angeles Lakers 2000/10/31 LAL @ POR POR
3 Jump Shot Jump Shot 35 20000012 33.9093 -101 135 -118.3708 7 1 ... 1.0 2PT Field Goal Left Side Center(LC) Mid-Range 16-24 ft. 1610612747 Los Angeles Lakers 2000/10/31 LAL @ POR POR
4 Jump Shot Jump Shot 43 20000012 33.8693 138 175 -118.1318 6 1 ... 0.0 2PT Field Goal Right Side Center(RC) Mid-Range 16-24 ft. 1610612747 Los Angeles Lakers 2000/10/31 LAL @ POR POR
5 Driving Dunk Shot Dunk 155 20000012 34.0443 0 0 -118.2698 6 2 ... 1.0 2PT Field Goal Center(C) Restricted Area Less Than 8 ft. 1610612747 Los Angeles Lakers 2000/10/31 LAL @ POR POR

5 rows × 24 columns