度度熊的交易计划

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1192    Accepted Submission(s): 440


Problem Description
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题:

喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。

由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。

同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。

由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。

据测算,每一个商品运输1公里,将会花费1元。

那么喵哈哈村最多能够实现多少盈利呢?
 

 

Input
本题包含若干组测试数据。
每组测试数据包含:
第一行两个整数n,m表示喵哈哈村由n个片区、m条街道。
接下来n行,每行四个整数a[i],b[i],c[i],d[i]表示的第i个地区,能够以a[i]的价格生产,最多生产b[i]个,以c[i]的价格出售,最多出售d[i]个。
接下来m行,每行三个整数,u[i],v[i],k[i],表示该条公路连接u[i],v[i]两个片区,距离为k[i]

可能存在重边,也可能存在自环。

满足:
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
 

 

Output
输出最多能赚多少钱。
 

 

Sample Input
2 1 5 5 6 1 3 5 7 7 1 2 1
 

 

Sample Output
23
 
题解:建边
1.建立超级源点S,对每个片区i连容量为b[i],费用为a[i]的单向边.
2.每个片区对可达的片区连容量为正无穷,费用为距离k[i]的双向边.
3.每个片区对汇点T连容量为d[i],费用为c[i]的双向边.
但是这样跑出来的是最大流下的最小费用.我们需要的是最小费用,所以当增广路 >=0(即没有比0小的增广路可以进行增广了),直接退出,取反最小费用,即是能赚的最多的钱.
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;

const int INF = 999999999;
const int N = 600;
const int M = 200005;
struct Edge{
    int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total;
bool vis[N];
void addEdge(int u,int v,int cap,int cost,int &k){
    edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
    edge[k].u=v,edge[k].v=u,edge[k].cap = 0,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
    memset(head,-1,sizeof(head));
    tot = 0;
}
bool spfa(int s,int t,int n){
    memset(vis,false,sizeof(vis));
    for(int i=0;i<=n;i++){
        low[i] = (i==s)?0:INF;
        pre[i] = -1;
    }
    queue<int> q;
    q.push(s);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int k=head[u];k!=-1;k=edge[k].next){
            int v = edge[k].v;
            if(edge[k].cap>0&&low[v]>low[u]+edge[k].cost){
                low[v] = low[u] + edge[k].cost;
                pre[v] = k; ///v为终点对应的边
                if(!vis[v]){
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t]==-1) return false;
    return true;
}
int MCMF(int s,int t,int n){
    int mincost = 0,minflow,flow=0;
     while(spfa(s,t,n))
    {
        if(low[t]>=0) break;
        minflow=INF+1;
        for(int i=pre[t];i!=-1;i=pre[edge[i].u])
            minflow=min(minflow,edge[i].cap);
        flow+=minflow;
        for(int i=pre[t];i!=-1;i=pre[edge[i].u])
        {
            edge[i].cap-=minflow;
            edge[i^1].cap+=minflow;
        }
        mincost+=low[t]*minflow;
    }
    total=flow;
    return mincost;
}

int main()
{
    int n,m,h,tcase;
    while(scanf("%d%d",&n,&m)!=EOF){

        init();
        int s = 0,t = n+1;
        for(int i=1;i<=n;i++){
            //if(a[i]>=mx) b[i] = 0;
            int a,b,c,d;
            scanf("%d%d%d%d",&a,&b,&c,&d);
            addEdge(s,i,b,a,tot);
            addEdge(i,t,d,-c,tot);
        }
        for(int i=1;i<=m;i++){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            addEdge(u,v,INF,w,tot);
            addEdge(v,u,INF,w,tot);
        }
        long long ans = MCMF(s,t,n+1);
        cout<<-ans<<endl;
    }
    return 0;
}