Find a multiple POJ - 2356 (抽屉原理)
原创
©著作权归作者所有:来自51CTO博客作者青山新雨的原创作品,请联系作者获取转载授权,否则将追究法律责任
抽屉原理:
形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。
题意:n个不同的元素,任意一个或者多个相加为n的倍数。找到这些元素。第一个输出元素的个数,后面分别输出这些元素。(多种情况输出一组)
分析:被n求模的余数为 0,1,2,3....n-1 有n个元素,任意几个数的和为n的倍数,那么这些和假设为 a1, a2 ,a3 ..... am 那么m一定大于n
把余数当做抽屉,一定会有至少一个抽屉有两个元素!就是抽屉原理的形式一。
#include<cstdio>
#include<cstring>
const int maxn = 1e5 + 5;
int num[maxn], hash[maxn], sum[maxn];
int n;
int main()
{
while (scanf("%d", &n) != EOF){
memset(hash, 0, sizeof(hash));
for (int i = 1; i <= n; ++i)
scanf("%d", &num[i]);
int t = 1, s = 1;
for (int i = 1; i <= n; ++i)
{
sum[i] = (sum[i - 1] + num[i]) % n;
if (sum[i] == 0){
t = i;
break;
}
if (hash[sum[i]] > 0){
s = hash[sum[i]] + 1;
t = i;
break;
}
hash[sum[i]] = i;
}
printf("%d\n", t - s + 1);
for (int i = s; i <= t; ++i)
printf("%d\n", num[i]);
}
}