Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://acm.hdu.edu.cn/showproblem.php?pid=5120Description
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.
A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.
Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.
Input
The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).
Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.
Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
Sample Input
2
2 3
0 0
0 0
2 3
0 0
5 0
Sample Output
Case #1: 15.707963
Case #2: 2.250778
HINT
题意
给你两个一样的圆环,问你这两个圆环相交的面积是多少
题解:
容斥定理就好了,剩下的都是套版
面积=大交大-大交小+小交小
代码:
//qscqesze #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <cmath> #include <cstring> #include <ctime> #include <iostream> #include <algorithm> #include <set> #include <bitset> #include <vector> #include <sstream> #include <queue> #include <typeinfo> #include <fstream> #include <map> #include <stack> typedef long long ll; using namespace std; //freopen("D.in","r",stdin); //freopen("D.out","w",stdout); #define sspeed ios_base::sync_with_stdio(0);cin.tie(0) #define maxn 1000006 #define mod 1001 #define eps 1e-9 #define PI acos(-1) const double EP = 1E-10 ; int Num; //const int inf=0x7fffffff; const ll inf=999999999; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } //************************************************************************************* struct Circle{ double x,y; double r; }; double calArea(Circle c1, Circle c2) { double d; double s,s1,s2,s3,angle1,angle2,temp; d=sqrt((c1.x-c2.x)*(c1.x-c2.x)+(c1.y-c2.y)*(c1.y-c2.y)); if(d>=(c1.r+c2.r))//两圆相离 return 0; if((c1.r-c2.r)>=d)//两圆内含,c1大 return acos(-1.0)*c2.r*c2.r; if((c2.r-c1.r)>=d)//两圆内含,c2大 return acos(-1.0)*c1.r*c1.r; angle1=acos((c1.r*c1.r+d*d-c2.r*c2.r)/(2*c1.r*d)); angle2=acos((c2.r*c2.r+d*d-c1.r*c1.r)/(2*c2.r*d)); s1=angle1*c1.r*c1.r;s2=angle2*c2.r*c2.r; s3=c1.r*d*sin(angle1); s=s1+s2-s3; return s; } int main() { int t; scanf("%d",&t); for(int cas = 1;cas <= t;cas++) { Circle a1,a2,b1,b2; double R,r; scanf("%lf%lf",&a1.r,&a2.r); b1.r=a1.r; b2.r=a2.r; scanf("%lf%lf",&a1.x,&a1.y); scanf("%lf%lf",&b1.x,&b1.y); a2.x=a1.x; a2.y=a1.y; b2.x=b1.x; b2.y=b1.y; double ans = 0; ans += calArea(a1,b1); ans -= calArea(a1,b2); ans -= calArea(b1,a2); ans += calArea(a2,b2); printf("Case #%d: %.6lf\n",cas,ans); } }