一、遗传算法及栅格地图简介

1 遗传算法

1.1 引言

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_02

1.2 遗传算法理论

1.2.1 遗传算法的生物学基础

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_03

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_04

1.2.2 遗传算法的理论基础

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_05

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_遗传算法_06

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵_07

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_初始化_08

1.2.3 遗传算法的基本概念

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_09

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_10

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_初始化_11

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_初始化_12

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_遗传算法_13

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_14

1.2.4 标准的遗传算法

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵_15

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_16

1.2.5 遗传算法的特点

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_17

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_遗传算法_18

1.2.6 遗传算法的改进方向

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_遗传算法_19

1.3 遗传算法流程

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_20

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵_21

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_交叉算子_22

1.4 关键参数说明

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_初始化_23

2 栅格地图

2.1 栅格法应用背景

路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。

2.2 栅格法实质

将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。

2.3 10乘10的静态环境地图

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_24

10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1)) %设置障碍物的左下角点的x,y坐标
for(j=1:n(2))
if(map(i,j)==1)
p(r,1)=j-1;
p(r,2)=i-1;
fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
[p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
r=r+1;
hold on
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
[row,col] = ind2sub([n(2),n(1)],i);
text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];
DrawMap(map); %得到环境地图

2.4 栅格地图中障碍栅格处路径约束

移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当

移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束

条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对

角式移动方式。

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵_25

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_邻接矩阵_26

约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格

设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:

代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵 % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
for(z=1:n(2))
if(map(j,z)==1)
if(j==1) %若障碍物在第一行
if(z==1) %若障碍物为第一行的第一个
W(j+1,j+n(2)*j)=Inf;
W(j+n(2)*j,j+1)=Inf;
else
if(z==n(2)) %若障碍物为第一行的最后一个
W(n(2)-1,n(2)+n(1)*j)=Inf;
W(n(2)+n(1)*j,n(2)-1)=Inf;
else %若障碍物为第一行的其他
W(z-1,z+j*n(2))=Inf;
W(z+j*n(2),z-1)=Inf;
W(z+1,z+j*n(2))=Inf;
W(z+j*n(2),z+1)=Inf;
end
end
end
if(j==n(1)) %若障碍物在最后一行
if(z==1) %若障碍物为最后一行的第一个
W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
else
if(z==n(2)) %若障碍物为最后一行的最后一个
W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
else %若障碍物为最后一行的其他
W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
end
end
end
if(z==1)
if(j~=1&&j~=n(1)) %若障碍物在第一列非边缘位置
W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
end
end
if(z==n(2))
if(j~=1&&j~=n(1)) %若障碍物在最后一列非边缘位置
W((j+1)*n(2),j*n(2)-1)=Inf;
W(j*n(2)-1,(j+1)*n(2))=Inf;
W(j*n(2)-1,(j-1)*n(2))=Inf;
W((j-1)*n(2),j*n(2)-1)=Inf;
end
end
if(j~=1&&j~=n(1)&&z~=1&&z~=n(2)) %若障碍物在非边缘位置
W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
end
end
end
end
end

2.5 栅格法案例

下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;
1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 1 0 0;
0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 1 0;
1 0 0 0 0 1 1 0 0 0;
0 0 0 1 0 0 0 0 0 0;
1 1 1 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;
0 0 0 0 0 1 1 0 0 0;];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map); %得到环境地图的邻接矩阵
W(W==0)=Inf; %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map); %得到栅格相应的x,y坐标
Plot(distance,x,y); %画出路径


运行结果如下:

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_遗传算法_27

其中函数程序:

DrawMap(map) 详见建立栅格地图

W=G2D(map) ; 详见建立邻接矩阵

[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法

[x, y] =Get_xy(distance, path, map) ;

Plot(distance, x, y) ;

三、部分源代码

%% 改进遗传
clc;
close all
clear
load('data4.mat')
figure(1)%画障碍图
hold on
S=(S_coo(2)-0.5)*num_shange+(S_coo(1)+0.5);%起点对应的编号
E=(E_coo(2)-0.5)*num_shange+(E_coo(1)+0.5);%终点对应的编号
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=[i-1,i-1,i,i];
x=[j-1,j,j,j-1];
h=fill(x,y,'k');
set(h,'facealpha',0.5)
end
s=(num2str((i-1)*num_shange+j));
%text(j-0.95,i-0.5,s,'fontsize',6)
end
end
axis([0 num_shange 0 num_shange])%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
plot([0 num_shange],[i-1 i-1],'k-');
plot([i i],[0 num_shange],'k-');%画网格线
end
PopSize=20;%种群大小
OldBestFitness=0;%旧的最优适应度值
gen=0;%迭代次数
maxgen =100;%最大迭代次数
k1 = 1;%交叉1
k3 = 1;%交叉2
% c1=0.5;%交叉概率
Pm=0.3;%变异概率

%%
%初始化路径

Group=ones(num_point,PopSize); %种群初始化
for i=1:PopSize
p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
%% 将起点编号放在首位
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
%%将每个个体进行合理化处理
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
while flag==1%如处理不成功,则初始化个体,重新处理
p_lin=randperm(num_point)';
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
[Group(:,i),flag]=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
end
end

%最优解
route=Group(:,end)';
index1=find(route==E);
route_lin=route(1:index1);
for i=2:index1
Q1=[mod(route_lin(i-1)-1,num_shange)+1-0.5,ceil(route_lin(i-1)/num_shange)-0.5];
Q2=[mod(route_lin(i)-1,num_shange)+1-0.5,ceil(route_lin(i)/num_shange)-0.5];
plot([Q1(1),Q2(1)],[Q1(2),Q2(2)],'b-.','LineWidth',3)
end
title('改进改进遗传算法-随机路线');
figure(2)
hold on
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=[i-1,i-1,i,i];
x=[j-1,j,j,j-1];
h=fill(x,y,'k');
set(h,'facealpha',0.5)
end
s=(num2str((i-1)*num_shange+j));
text(j-0.95,i-0.5,s,'fontsize',6)
end
end
axis([0 num_shange 0 num_shange])%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
plot([0 num_shange],[i-1 i-1],'k-');
plot([i i],[0 num_shange],'k-');%画网格线
end
for i=2:index1
Q1=[mod(route_lin(i-1)-1,num_shange)+1-0.5,ceil(route_lin(i-1)/num_shange)-0.5];
Q2=[mod(route_lin(i)-1,num_shange)+1-0.5,ceil(route_lin(i)/num_shange)-0.5];
plot([Q1(1),Q2(1)],[Q1(2),Q2(2)],'b-.','LineWidth',3)
end
%初始化粒子速度(即交换序)
Velocity =zeros(num_point,PopSize);
for i=1:PopSize
Velocity(:,i)=round(rand(1,num_point)'*num_point/10); %round取整
end

%计算每个个体对应路径的距离
for i=1:PopSize
EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
end

IndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径
IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度
[GlobalBestFitness,index]=min(EachPathDis);%找出全局最优值和相应序号
%寻优
while gen < maxgen

%迭代次数递增
gen = gen +1
fitness=EachPathDis;
[fitness_max,index0] = max(fitness);
fitness_average = sum(fitness)/(length(fitness)); % 种群的平均值
collect_fit_average(gen) = fitness_average; % 保存适应度的平均值
collect_fitmax_subtract_fit_average(gen) = fitness_max - fitness_average; % 保存f_max-f_average ;
fitness_min = min(fitness);
%更新全局极值点位置,这里指路径
for i=1:PopSize
GlobalBest(:,i) = Group(:,index);
end
clone_x=Group';
%%
for count=1:2:PopSize
% 自适应计算Pc.
% 选区两个交叉的个体的较大的适应度值
if fitness(count)>=fitness(count+1)
fitness_selected = fitness(count);
else
fitness_selected = fitness(count+1);
end
% 计算Pc
if fitness_selected >= fitness_average
Pc = k1*(fitness_max-fitness_selected)/(fitness_max-fitness_average);
else
Pc = k3;
end
collect_Pc(gen, count) = Pc; % 保存Pc的值
temp_cross = rand();
if temp_cross < Pc
% 交叉算子 注:这种交叉算子效果更好
clone_x=HoldByOdds( clone_x,Pc);%进行交叉变换
% 改进的交叉算子 参考文献:管小艳. 实数编码下改进遗传算法的改进及其应用[D].重庆大学,2012. 注:但这种交叉算子实际的效果不理想
else
clone_x= clone_x;
end
end

三、运行结果

【路径规划】基于matlab改进的遗传算法栅格地图路径规划【含Matlab源码 525期】_栅格_28

四、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

《智能优化算法及其MATLAB实例(第2版)》包子阳 余继周 杨杉著 电子工业出版社