1 统计两个数二进制位多少位不同

461. Hamming Distance(Easy)

The Hamming distance between two integers is the number of positions at which the corresponding bits are different.Given two integers x and y, calculate the Hamming distance.

Note:
0 ≤ x, y < 231.

Example:

Input: x = 1, y = 4
Output: 2
Explanation:
1 (0 0 0 1)
4 (0 1 0 0)
------↑— ↑
The above arrows point to positions where the corresponding bits are different.

方法一:逐位比较

class Solution {
public:
    int hammingDistance(int x, int y) {
        int count=0;
        while(x||y)
        {
            if(x%2!=y%2)
                count++;
            x=x>>1;
            y=y>>1;
        }
        return count;
    }
};

方法二:两数异或,不同的位会保留下来

class Solution {
public:
    int hammingDistance(int x, int y) {
        x=x^y;
        int count=0;
        while(x)
        {
            if(x%2)
                count++;
            x=x>>1;
        }
        return count;
    }
};
2 数组中唯一一个不重复的数

136. Single Number(Easy)
Given a non-empty array of integers, every element appears twice except for one. Find that single one.

Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

Example 1:

Input: [2,2,1]
Output: 1

Example 2:

Input: [4,1,2,1,2]
Output: 4

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int res = 0;
        for(auto c : nums)
            res = res^c;
        return res;
    }
};
3 寻找数组中缺失的数

268. Missing Number(Easy)
Given an array containing n distinct numbers taken from 0, 1, 2, …, n, find the one that is missing from the array.

Example 1:

Input: [3,0,1]
Output: 2

Example 2:

Input: [9,6,4,2,3,5,7,0,1]
Output: 8

Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?

方法一:不缺失的和减去数组和

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        int cnt=0;
        for(int i=nums.size()-1;i>=0;i--)
            cnt+=i+1-nums[i];
        return cnt;
    }
};

方法二:位运算
将数组中的所有数和原本不缺失的所有数异或,除了缺失的数,其他都出现两次,所以结果为缺失的数。
例:Value 0 1 3 4
missing
=0∧(1∧0)∧(2∧1)∧(3∧3)∧(4∧4)
=(0∧0)∧(1∧1)∧(3∧3)∧(4∧4)∧2
=0∧0∧0∧0∧2
=2

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        int cnt=0;
        for(int i=0;i<nums.size();i++)
            cnt=cnt^(i+1)^nums[i];
        return cnt;
    }
};
4 不重复的两个数字

260. Single Number III(Medium)
数组中有两个不重复的数字,找出这两个不重复的数字。
Example:

Input: [1,2,1,3,2,5]
Output: [3,5]

解题思路
将所有元素异或,得到这两个不重复元素的异或值,从低位向高位找出第一个不相等的位(异或值该位等于1)
按照该位等于0和等于1,将元素分为两个组,分别异或就可以找出两个不相等的元素了。

class Solution {
public:
    vector<int> singleNumber(vector<int>& nums) {
        int diff = 0;
        for (int c : nums)
            diff ^= c;
        int flag = 1;
        while (1){
            if (diff&flag)
                break;
            flag = flag<<1;
        }
        vector<int>res(2,0);
        for(auto c : nums){
            if (c&flag)
                res[0] ^= c;
            else
                res[1] ^=c;
        }
        return res;
    }
};
5 翻转一个数的比特位

(Easy)

4 判断一个数是不是 2 的 n 次方

231. Power of Two(Easy)
如果是 2 的 n 次方,则二级制数中只有一个 2。

class Solution {
public:
    bool isPowerOfTwo(int n) {
        return n>0 && (n&(n-1))==0;
    }
};

可以直接统计二进制数中 1 的个数。

class Solution {
public:
    bool isPowerOfTwo(int n) {
        if(n<0)
            return false;
        int count=0;
        while(n)
        {
            if(n&1)
                count++;
            n=n>>1;
        }
        return count==1?true:false;
    }
};
5 判断一个数是不是 4 的 n 次方

342. Power of Four(Easy)
Given an integer (signed 32 bits), write a function to check whether it is a power of 4.

Example 1:

Input: 16
Output: true

Example 2:

Input: 5
Output: false

Follow up: Could you solve it without loops/recursion?
问题分析
要使得数是 4 的 n 次方,该数的二进制数中只有一个 1,且在奇数位置上。

class Solution {
public:
    bool isPowerOfFour(int num) {
        return num>0 && (num&(num-1))==0 && (num&0b01010101010101010101010101010101)!=0;
    }
};

用循环统计二进制数奇数位,偶数位 1 的个数,要使得奇数位有 1 个 1,偶数位都为 0 才是 4 的 n 次方。

class Solution {
public:
    bool isPowerOfFour(int num) {
        int oddcount=0;
        int evencount=0;
        int tmp=num>>1;
        while(num>0){
            if(num&1)oddcount++;
            if(tmp&1)evencount++;
            num=num>>2;
            tmp=tmp>>2;
        }
        return oddcount==1&&evencount==0;
    }
};

直接除以 4,每次除以 4 之前判断对 4 求余是否有余数。

class Solution {
public:
    bool isPowerOfFour(int num) {
        if(num==0) return false;
        while(num!=1){
            if(num%4)
                return false;
            num=num/4;
        }
        return true;
    }
};
6 查看整数二进制位 0 和 1 是否交替出现

693. Binary Number with Alternating Bits(Easy)
Given a positive integer, check whether it has alternating bits: namely, if two adjacent bits will always have different values.

Example 1:

Input: 5
Output: True
Explanation:
The binary representation of 5 is: 101

Example 2:

Input: 7
Output: False
Explanation:
The binary representation of 7 is: 111.

Example 3:

Input: 11
Output: False
Explanation:
The binary representation of 11 is: 1011.

Example 4:

Input: 10
Output: True
Explanation:
The binary representation of 10 is: 1010.

方法一
如果 n 的二进制位为 0,1 交错,将 n 右移一位与自身相“异或”,则结果全为 1。结果加 1 之后和自身“与”为 0。

class Solution {
public:
    bool hasAlternatingBits(int n) {
        long a=n^(n>>1);
        return (a&(a+1))==0;
    }
};

方法二
直接查看二对二进制数的相邻位进行比较,都不相同返回 true。

class Solution {
public:
    bool hasAlternatingBits(int n) {
        int i1=n&1;
        n=n>>1;
        int i2=n&1;
        while(n>0){
            if(i1==i2)return false;
            i1=i2;
            n=n>>1;
            i2=n&1;
        }
        return true;
    }
};