✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
本文展示了两种任意角度的路径规划算法,分别是 Basic Theta* 和 Angle-Propagation Theta*。它们都是A * 算法的变体,都通过网格的边来扩展,同时也都不会将路径限制在格子的边缘上。与A * 不同的是,它们并不保证找到的路径一定是最短路径。它们名字中的符号 * 并不表示算法的最优性,只是为了表示它们与A * 算法的相似性。
Basic Theta * 算法更容易理解和实现,也能很快的找到较短的路径。而Angle-Propagation Theta * 在扩展顶点的过程当中传递可见角度范围,以实现在顶点扩展的过程中计算不会随着格子数量增线性增长,而是保持在常量级别。但是它也更复杂,速度更慢,找到的路径也通常稍长一些。
我们将这两种算法都统称为Theta * ,并对它的特性进行了研究。通过实验,我们发现在与A * 同级别的时间消耗下,Theta * 可以找出比基于后期平滑处理的A * 算法和FieldD * 算法(我们所知道的A * 的唯一一种基于网格边缘扩展但不将路径固定在网格边上的版本)都要更短的路径。
最后,我们将Theta * 算法扩展到具有非均匀遍历成本的网格,并在路径长短和耗时之间提供权衡。
⛄ 部分代码
function Theta_star
clc;
clear;
close all;
%% 初始化界面
%load maze.mat map
n = 10; % field size n x n tiles 20*20的界面
wallpercent = 0.3; % this percent of field is walls 15%的界面作为阻碍物(墙)
cmap = [1 1 1; ...% 1 - white - 空地
0 0 0; ...% 2 - black - 障碍
1 0 0; ...% 3 - red - 已搜索过的地方
0 0 1; ...% 4 - blue - 下次搜索备选中心
0 1 0; ...% 5 - green - 起始点
1 1 0;...% 6 - yellow - 到目 标点的路径
1 0 1];% 7 - - 目标点
colormap(cmap);
global field
field= ones(n);
startposind =12; %sub2ind用来将行列坐标转换为线性坐标,这里是必要的,因为如果把startposind设置成[x,y]的形式,访问field([x,y])的时候
goalposind =55; %它并不是访问x行y列元素,而是访问线性坐标为x和y的两个元素
%field(ceil(n^2.*rand(floor(n*n*wallpercent),1) )) =2;
field(1:5, 7) = 2;
field(8,1:3) = 2;
field(3:5,3:5)=2;
field(5,4)=2;
% field(8,10)=Inf;
% startposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand)); %sub2ind用来将行列坐标转换为线性坐标,这里是必要的,因为如果把startposind设置成[x,y]的形式,访问field([x,y])的时候
%goalposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand)); %它并不是访问x行y列元素,而是访问线性坐标为x和y的两个元素
field(startposind )=5;
field(goalposind )=7;
costchart = NaN*ones(n); %costchart用来存储各个点的实际代价,NaN代表不是数据(不明确的操作)
costchart(startposind) = 0; %起点的实际代价
fieldpointers = zeros(n); %fieldpointers用来存储节点的父节点
global setOpenCosts;
setOpen = (startposind); setOpenCosts = (0); setOpenHeuristics = (Inf);
setClosed = []; setClosedCosts = [];%初始化起点的open表和close表
[goalpos(1) ,goalpos(2)] = ind2sub([10 10],goalposind);
% uicontrol('Style','pushbutton','String','RE-DO', 'FontSize',12, ...
% 'Position', [10 10 60 40], 'Callback','ASTAR');
tic
while true %ismember(A,B)返回与A同大小的矩阵,其中元素1表示A中相应位置的元素在B中也出现,0则是没有出现
field(startposind )=5;
field(goalposind )=7;
⛄ 运行结果
⛄ 参考文献
[1] 周东健, 张兴国, 马海波,等. 基于栅格地图-蚁群算法的机器人最优路径规划[J]. 南通大学学报:自然科学版, 2013, 12(4):91-94.
[2] 周东健, 张兴国, 马海波,等. 基于栅格地图-蚁群算法的机器人最优路径规划[J]. 南通大学学报:自然科学版, 2013, 12(4):4.
[3] 于晓天, 高秀花, 张俊,等. 基于分层栅格地图的移动机器人路径规划[J]. 导航与控制, 2017, 16(2):7.
[4] Daniel K , Nash A , Koenig S , et al. Theta*: Any-Angle Path Planning on Grids[J]. Journal of Artificial Intelligence Research, 2010, 39(1):533-579.