✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
⛄ 内容介绍
This manuscript investigates the performance of newly developed soft computing algorithm called artificial gorilla troops optimizer (GTO) for determining optimal parameters of solar photovoltaic (PV) model. A very much used poly-crystalline PV module is mathematically modelled with single and double diode types for the analysis purpose. The parameters of the equivalent designed modeled have been derived with the suggested algorithm. For the accurate system performance characteristics, multiple points have been considered from the PV module data sheet in forming objective function. In this paper, the complete results have been demonstrated with S75 PV module practical data sheet standards.
⛄ 部分代码
%Artificial Gorilla Troops Optimizer
clear all
close all
clc
% Population size and stoppoing condition
pop_size=30;
max_iter=100;
% Define your objective function's details here
Function_name='F1'; % Name of the test function
[lower_bound,upper_bound,variables_no,fobj]=Get_Functions_details(Function_name);
[Silverback_Score,Silverback,convergence_curve]=GTO(pop_size,max_iter,lower_bound,upper_bound,variables_no,fobj);
figure('Position',[269 240 660 290])
% Best optimal values for the decision variables
subplot(1,2,1)
func_plot(Function_name);
xlabel('Decision variables')
ylabel('Best estimated values ')
box on
% Best convergence curve
subplot(1,2,2)
plot(convergence_curve,'Color','r','linewidth',1.5)
title('Convergence curve of GTO')
xlabel('Current_iteration');
ylabel('Objective value');
box on
⛄ 运行结果
⛄ 参考文献
[1] Kumar V R , Bali S K , Devarapalli R . GTO Algorithm Based Solar Photovoltaic Module Parameter Selection[C]// 2021 Innovations in Power and Advanced Computing Technologies (i-PACT). 0.