1 简介
VRP问题在现实生活中应用广泛,很多领域的问题都可以抽象成VRP问题进行解决,其研究和应用一直是热点。 本文首先详细介绍了VRP问题的分类,常见的约束条件及基本的研究技术和方法。给出了几个基本VRP问题的介绍及其数学模型。 模拟退火算法(SA)相对于其它智能算法在求解VRP问题时具有收敛速度快且能找到全局最优解的优点。因此本文详细介绍了模拟退火算法的数学模型及其寻优方法,证明了模拟退火算法可以找到全局最优解,研究了模拟退火算法优缺点。基于模拟退火算法给出了固定车辆数单目标VRP问题的MATLAB语言算法。
模拟退火法( simulated annealing,SA) 是一种源于 20 世纪 50 年代、基于 Monte Carlo 迭代求解思想的随机搜索算法, 其出发点是将组合优化问题与统计力学的热平衡作类比,把优化的目标函数视作能量函数,模仿物理学中固体物质的退火处理,先加工使之具有足够高的能量,然后再降温,其内部能量也相应下降,在热平衡条件下,物体内部处于不同状态的概率服从分布,若退火步骤恰当,则最终会形成最低能量的基态。 这种算法思想在求解优化问题时,不但接受对目标函数( 能量函数)有改进的状态,还以某种概率接受使目标函数恶化的状态,从而可使之避免过早收敛到某个局部极值点, 也正是这种概率性扰动能够使之跳出局部极值点,故而得到的解常常很好。 模拟退火算法于 80 年代开始广泛应用于各种组合优化为题的求解。
2 部分代码
%
clc;
clear;
close all;
%% Problem Definition
model=SelectModel(); % Select Model of the Problem
model.eta=0.1;
CostFunction=@(q) MyCost(q,model); % Cost Function
%% SA Parameters
MaxIt=1200; % Maximum Number of Iterations
MaxIt2=80; % Maximum Number of Inner Iterations
T0=100; % Initial Temperature
alpha=0.98; % Temperature Damping Rate
%% Initialization
% Create Initial Solution
x.Position=CreateRandomSolution(model);
[x.Cost, x.Sol]=CostFunction(x.Position);
% Update Best Solution Ever Found
BestSol=x;
% Array to Hold Best Cost Values
BestCost=zeros(MaxIt,1);
% Set Initial Temperature
T=T0;
%% SA Main Loop
for it=1:MaxIt
for it2=1:MaxIt2
% Create Neighbor
xnew.Position=CreateNeighbor(x.Position);
[xnew.Cost, xnew.Sol]=CostFunction(xnew.Position);
if xnew.Cost<=x.Cost
% xnew is better, so it is accepted
x=xnew;
else
% xnew is not better, so it is accepted conditionally
delta=xnew.Cost-x.Cost;
p=exp(-delta/T);
if rand<=p
x=xnew;
end
end
% Update Best Solution
if x.Cost<=BestSol.Cost
BestSol=x;
end
end
% Store Best Cost
BestCost(it)=BestSol.Cost;
% Display Iteration Information
if BestSol.Sol.IsFeasible
FLAG=' *';
else
FLAG='';
end
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it)) FLAG]);
% Reduce Temperature
T=alpha*T;
% Plot Solution
figure(1);
PlotSolution(BestSol.Sol,model);
pause(0.01);
end
%% Results
figure;
plot(BestCost,'LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');
grid on;
3 仿真结果
4 参考文献
[1]宋燕子. 基于模拟退火算法的启发式算法在VRP中的应用. (Doctoral dissertation, 华中师范大学).
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。