1 简介

提出了一种基于模糊熵和FCM的彩色图像聚类分割算法.该算法可以自动确定图像的颜色类数目和初始类中心,从而提高了聚类的收敛速度,并且能够解决模糊熵阈值化分割算法所造成的过度分割问题.首先,计算彩色图像各颜色分量的模糊熵,获得分量模糊熵曲线,并根据模糊熵原理确定各分量的分割区域及聚类中心;然后,对各分量的聚类中心进行组合,形成彩色图像可能的聚类中心.但是,组合的聚类中心数目会多于实际的聚类数目,造成过度分割.

2 部分代码

function [center, U, obj_fcn] = iffcm(data, cluster_n)



if nargin ~= 2 & nargin ~= 3,

error('Too many or too few input arguments!');

end


data_n = size(data, 1);

in_n = size(data, 2);


% Change the following to set default options

default_options = [2; % exponent for the partition matrix U

100; % max. number of iteration

1e-5; % min. amount of improvement

1]; % info display during iteration 


if nargin == 2,

options = default_options;

else

% If "options" is not fully specified, pad it with default values.

if length(options) < 4,

tmp = default_options;

tmp(1:length(options)) = options;

options = tmp;

end

% If some entries of "options" are nan's, replace them with defaults.

nan_index = find(isnan(options)==1);

options(nan_index) = default_options(nan_index);

if options(1) <= 1,

error('The exponent should be greater than 1!');

end

end


expo = options(1); % Exponent for U

max_iter = options(2); % Max. iteration

min_impro = options(3); % Min. improvement

display = options(4); % Display info or not

% alfa=0.9;

obj_fcn = zeros(max_iter, 1); % Array for objective function

%U = initfcm(cluster_n, data_n); % Initial fuzzy partition

center= initifcmv(cluster_n);            %初始化聚类中心

[histdata,histrate]=datahistprocess(data);%data:图像灰度值除255归一化,hist:灰度级对应的频数



% Main loop

for i = 1:max_iter,

%[U, center, obj_fcn(i)] = fcm_spatial_stepfcm(data,data_spatial, U, cluster_n, expo, beta);

    [U, center, obj_fcn(i)] = iffcm_step(histdata, center, cluster_n, expo,histrate);

if display, 

fprintf('Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));

end

% check termination condition

if i > 1,

%  if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro, break; end,

%         if norm(old_U-U,2) < min_impro, break; end,

       % if norm(old_U-U,'fro') < min_impro, break; end,

          if norm(old_center-center,2) < min_impro, break; end

    end

    old_U = U;

    old_center = center;

end


U=u_return(old_U,data);

iter_n = i; % Actual number of iterations 

% obj_fcn(iter_n+1:max_iter) = [];

mf = U.^expo;       % 隶属度矩阵进行指数运算结果

dist = distfcm(old_center, data);       % 计算距离矩阵

obj_fcn = sum(sum((dist.^2).*mf));  % 计算目标函数值 

3 仿真结果


【图像分割】基于模糊熵聚类算法IFFCM实现图像分割附Matlab代码_聚类

【图像分割】基于模糊熵聚类算法IFFCM实现图像分割附Matlab代码_彩色图像_02

4 参考文献

[1]李桂芝等. "基于模糊熵和RPCL的彩色图像聚类分割." 中国图象图形学报 10.10(2005):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【图像分割】基于模糊熵聚类算法IFFCM实现图像分割附Matlab代码_matlab代码_03