【路径规划】基于遗传算法求解带时间窗车辆路径规划问题(VRPTW)matlab源码

1 简介

有时间窗的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW)因为其有重要的现实意义而备受关注.其时间窗即为客户接受服务的时间范围,该问题是运筹学和组合优化领域中的著名NP问题,是解决物流配送效率的关键,传统寻优方法效率低,耗时长,找不到满意解,往往导致物流成本过高.为了提高寻优效率,降低物流运送成本,基本遗传算法求解VRPTW问题.首先建立数学模型,然后基于大规模邻域搜索算法(LNS)生成遗传算法初始解,最后利用遗传算法在初始种群中找到最优解.计算结果表明,遗传算法可以更好求解车辆路径问题,有效降低物流成本.

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_路径规划

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_遗传算法_02

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_最优解_03

2 部分代码

%
%
clear
clc
close all
tic
%% 用importdata这个函数来读取文件
% filename='.\evrptw_instances\c101_21.txt';
c101=importdata('data.txt');
cap=200;                                                        %车辆最大装载量
%% 提取数据信息
E=c101(1,5);                                                    %配送中心时间窗开始时间
L=c101(1,6);                                                    %配送中心时间窗结束时间
vertexs=c101(:,2:3);                                            %所有点的坐标x和y
customer=vertexs(2:end,:);                                       %顾客坐标
cusnum=size(customer,1);                                         %顾客数
v_num=6;                                                        %车辆最多使用数目
demands=c101(2:end,4);                                          %需求量
a=c101(2:end,5);                                                %顾客时间窗开始时间[a[i],b[i]]
b=c101(2:end,6);                                                %顾客时间窗结束时间[a[i],b[i]]
s=c101(2:end,7);                                                %客户点的服务时间
h=pdist(vertexs);
dist=squareform(h);                                             %距离矩阵,满足三角关系,暂用距离表示花费c[i][j]=dist[i][j]
%% 遗传算法参数设置
alpha=10;                                                       %违反的容量约束的惩罚函数系数
belta=100;                                                      %违反时间窗约束的惩罚函数系数
NIND=100;                                                       %种群大小
MAXGEN=100;                                                     %迭代次数
Pc=0.9;                                                         %交叉概率
Pm=0.05;                                                        %变异概率
GGAP=0.9;                                                       %代沟(Generation gap)
N=cusnum+v_num-1;                                               %染色体长度=顾客数目+车辆最多使用数目-1
%% 初始化种群
init_vc=init(cusnum,a,demands,cap);                             %构造初始解
Chrom=InitPopCW(NIND,N,cusnum,init_vc);
%% 输出随机解的路线和总距离
disp('初始种群中的一个随机值:')
[VC,NV,TD,violate_num,violate_cus]=decode(Chrom(1,:),cusnum,cap,demands,a,b,L,s,dist);
% disp(['总距离:',num2str(TD)]);
disp(['车辆使用数目:',num2str(NV),',车辆行驶总距离:',num2str(TD),',违反约束路径数目:',num2str(violate_num),',违反约束顾客数目:',num2str(violate_cus)]);
disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
%% 优化
gen=1;
gcf=figure(1);
hold on;box on
xlim([0,MAXGEN])
title('优化过程')
xlabel('代数')
ylabel('最优值')
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img.png')         %即可得到对应格式和期望dpi的图像
ObjV=calObj(Chrom,cusnum,cap,demands,a,b,L,s,dist,alpha,belta);             %计算种群目标函数值
preObjV=min(ObjV);
while gen<=MAXGEN
%% 计算适应度
ObjV=calObj(Chrom,cusnum,cap,demands,a,b,L,s,dist,alpha,belta);             %计算种群目标函数值
line([gen-1,gen],[preObjV,min(ObjV)]);pause(0.0001)
preObjV=min(ObjV);
FitnV=Fitness(ObjV);
%% 选择
SelCh=Select(Chrom,FitnV,GGAP);
%% OX交叉操作
SelCh=Recombin(SelCh,Pc);
%% 变异
SelCh=Mutate(SelCh,Pm);
%% 局部搜索操作
SelCh=LocalSearch(SelCh,cusnum,cap,demands,a,b,L,s,dist,alpha,belta);
%% 重插入子代的新种群
Chrom=Reins(Chrom,SelCh,ObjV);
%% 删除种群中重复个体,并补齐删除的个体
Chrom=deal_Repeat(Chrom);
%% 打印当前最优解
ObjV=calObj(Chrom,cusnum,cap,demands,a,b,L,s,dist,alpha,belta);             %计算种群目标函数值
[minObjV,minInd]=min(ObjV);
disp(['第',num2str(gen),'代最优解:'])
[bestVC,bestNV,bestTD,best_vionum,best_viocus]=decode(Chrom(minInd(1),:),cusnum,cap,demands,a,b,L,s,dist);
disp(['车辆使用数目:',num2str(bestNV),',车辆行驶总距离:',num2str(bestTD),',违反约束路径数目:',num2str(best_vionum),',违反约束顾客数目:',num2str(best_viocus)]);
fprintf('\n')
%% 更新迭代次数
gen=gen+1 ;
end
%% 画出最优解的路线图
ObjV=calObj(Chrom,cusnum,cap,demands,a,b,L,s,dist,alpha,belta);             %计算种群目标函数值
[minObjV,minInd]=min(ObjV);
%% 输出最优解的路线和总距离
disp('最优解:')
bestChrom=Chrom(minInd(1),:);
[bestVC,bestNV,bestTD,best_vionum,best_viocus]=decode(bestChrom,cusnum,cap,demands,a,b,L,s,dist);
disp(['车辆使用数目:',num2str(bestNV),',车辆行驶总距离:',num2str(bestTD),',违反约束路径数目:',num2str(best_vionum),',违反约束顾客数目:',num2str(best_viocus)]);
disp('-------------------------------------------------------------')
%% 判断最优解是否满足时间窗约束和载重量约束,0表示违反约束,1表示满足全部约束
flag=Judge(bestVC,cap,demands,a,b,L,s,dist);
%% 检查最优解中是否存在元素丢失的情况,丢失元素,如果没有则为空
DEL=Judge_Del(bestVC);
%% 画出最终路线图
draw_Best(bestVC,vertexs);
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img2.png')         %即可得到对应格式和期望dpi的图像
save c101.mat
toc


3 仿真结果

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_遗传算法_04

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_最优解_05

4 参考文献

[1]张露. (2020). 基于改进遗传算法求解带时间窗车辆路径规划问题. 中国物流与采购(14).

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【VRP问题】基于遗传算法求解带时间窗、速度不同的车辆路径规划问题(VRPTW)附matlab代码_最优解_06