link

题意:问所有满足出现次数严格超过一半的数的区间数。

Yazid的新生舞会(线段树)_#define
思路:
算出公式套出线段树,建议歪着头看,参考大佬的思路,计算每个数的贡献,在计算每个贡献的时候,记录前缀数组,匹配了就加一,不匹配就减1,类似leetcode刷到的摩尔投票法,当一段区间>0其中出现次数最多的数一定超过一半。我们发现所有为匹配的位置加起来才n个,也就是-1的个数特别多,然后每一段里面的贡献为0,从前往后推考虑前面对面的影响,然后推柿子就行了,记录权值线段树维护sumi和sum。复杂度O(n*log(n))

// #pragma GCC target("avx")
// #pragma GCC optimize(2)
// #pragma GCC optimize(3)
// #pragma GCC optimize("Ofast")
// created by myq 
#include<iostream>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
#include<cctype>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<set>
#include<map>
#include<sstream>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long ll;
#define x first
#define y second
typedef pair<int,int> pii;
const int N = 1000010;
const int mod=998244353;
const int EPS=N/2;
vector<int>v[N]; 
struct node{
	int l;
	int r;
	int len;
	ll sum;
	ll sumi;
	ll i;
	ll lz;
	
}tr[N<<2];
int a[N];
void pushup(int u)
{
	tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;
	tr[u].sumi=tr[u<<1].sumi+tr[u<<1|1].sumi;
	tr[u].i=tr[u<<1].i+tr[u<<1|1].i;
}
void pushdown(int u)
{
	if(tr[u].lz)
	{
		tr[u<<1].lz+=tr[u].lz;
		tr[u<<1|1].lz+=tr[u].lz;
		tr[u<<1].sum+=tr[u].lz*tr[u<<1].len;
		tr[u<<1].sumi+=tr[u].lz*tr[u<<1].i;
		tr[u<<1|1].sumi+=tr[u].lz*tr[u<<1|1].i;
		tr[u<<1|1].sum+=tr[u].lz*tr[u<<1|1].len;
		tr[u].lz=0;
	}
}
void build(int u,int l,int r)
{
	tr[u]={l,r,r-l+1,0,0};
	if(l==r)
	{
		tr[u].i=l-EPS;
		return ;
	}
	int mid=l+r>>1;
	build(u<<1,l,mid),build(u<<1|1,mid+1,r);
	pushup(u);
}
void modify(int u,int l,int r,int d)
{
	if(tr[u].l>=l&&tr[u].r<=r)
	{
		tr[u].sum-=tr[u].len*d;
		tr[u].sumi-=tr[u].i*d;
		tr[u].lz+=d;
		return ;
	}
	pushdown(u);
	int mid=tr[u].l+tr[u].r>>1;
	if(l<=mid)	modify(u<<1,l,r,d);
	if(r>mid)	modify(u<<1|1,l,r,d);
	pushup(u);
}
ll querysumi(int u,int l,int r)
{
	if(tr[u].l>=l && tr[u].r<=r)	return tr[u].sumi;
	int mid=tr[u].l+tr[u].r>>1;
	pushdown(u);
	ll sumi=0;
	if(l<=mid)	sumi+=querysumi(u<<1,l,r);
	if(r>mid)	sumi+=querysumi(u<<1|1,l,r);
	
	return sumi;
}
ll	querysum(int u,int l,int r)
{
	if(tr[u].l>=l && tr[u].r<=r)	return tr[u].sum;
	int mid=tr[u].l+tr[u].r>>1;
	pushdown(u);
	ll sum=0;
	if(l<=mid)	sum+=querysum(u<<1,l,r);
	if(r>mid)	sum+=querysum(u<<1|1,l,r);
	return sum;
}
inline int get(int x)
{
	return x+EPS;
}
int main() 
{ 	
	ios::sync_with_stdio(0);cin.tie(0);
	int n,type;
	cin>>n>>type;
	for(int i=0;i<n;i++)
		v[i].push_back(0);
	for(int i=1;i<=n;i++)	
	{
		cin>>a[i];
		v[a[i]].push_back(i); 
	}
	for(int i=0;i<n;i++)
		v[i].push_back(n+1);  //  	return 0; 
	build(1,0,N-1);
	ll res=0;

	for(int i=0;i<n;i++)
	{
		if(v[i].size()==2)	continue;
		modify(1,get(0),get(0),1);
		int sum = 0;
		for(int j=1;j<v[i].size();j++)
		{
			
			if(v[i][j]!=v[i][j-1]+1)
			{
				int l=sum-(v[i][j]-v[i][j-1]-1); int r=sum-1;// 计算数列的贡献
				cout<<l<<" "<<r<<endl;
				res-=querysumi(1,get(l),get(r-1));
				res+=r*querysum(1,get(l),get(r-1));
				res+=querysum(1,0,get(l-1))*(r-l+1);
				sum=l;
				//修改
				modify(1,get(l),get(r),-1);
			}
			
			if(v[i][j]!=n+1) //计算单点的贡献
			{
				sum++;
				modify(1,get(v[i][j]),get(v[i][j]),1);
			}
			
							
		}
						//清空	
		modify(1,get(0),get(0),-1);
		
		for(int j=1;j<v[i].size();j++)
		{
			
			if(v[i][j]!=v[i][j-1]+1)
			{
				int l=sum-(v[i][j]-v[i][j-1]-1); int r=sum-1;// 计算数列的贡献
				sum=l;
				//修改
				modify(1,get(l),get(r),1);
			}
			
			if(v[i][j]!=n+1) //计算单点的贡献
			{
				sum++;
				modify(1,get(v[i][j]),get(v[i][j]),-1);
			}
			
							
		}
	}
	
	cout<<res<<endl;
	return 0;
	
}
/**
* In every life we have some trouble
* When you worry you make it double
* Don't worry,be happy.
**/