本篇我们来训练一个ANN人工神经网络
详细代码文件可以从我的GitHub地址获取
https://github.com/liuzuoping/Deep_Learning_note
准备好建立网络所需
import numpy as np
def softmax_function(x):
return np.exp(x) / np.sum(np.exp(x))
def sigmoid_function(x):
return 1/ (1 + np.exp(-x))
def dfunc(f, x):
h = 1e-4
grad = np.zeros_like(x)
it = np.nditer(x, flags=['multi_index'])
while not it.finished:
idx = it.multi_index
tmp_val = x[idx]
x[idx] = float(tmp_val) + h
fxh1 = f(x) # f(x+h)
x[idx] = tmp_val - h
fxh2 = f(x) # f(x-h)
grad[idx] = (fxh1 - fxh2) / (2*h)
x[idx] = tmp_val
it.iternext()
return grad
def cross_entropy_err(y_hat, y):
delta = 1e-8
return -np.sum(y*np.log(y_hat + delta))
构建ANN类
class ANN:
def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
self.params = {}
self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def predict(self, x):
W1, W2 = self.params['W1'], self.params['W2']
b1, b2 = self.params['b1'], self.params['b2']
a1 = np.dot(x, W1) + b1
z1 = sigmoid_function(a1)
a2 = np.dot(z1, W2) + b2
y = softmax_function(a2)
return y
def loss(self, x, y):
y_hat = self.predict(x)
return cross_entropy_err(y_hat, y)
def numerical_gradient(self, x, y):
loss_W = lambda W: self.loss(x, y)
grads = {}
grads['W1'] = dfunc(loss_W, self.params['W1'])
grads['b1'] = dfunc(loss_W, self.params['b1'])
grads['W2'] = dfunc(loss_W, self.params['W2'])
grads['b2'] = dfunc(loss_W, self.params['b2'])
建立一两层神经网络
net = ANN(input_size=4, hidden_size=5, output_size=3)
net.params['W1'].shape
net.params['b1'].shape
net.params['W2'].shape
net.params['b2'].shape
(5,)
(3,)
准备好建立网络所需数据
from sklearn.datasets import load_iris
iris = load_iris()
x= iris.data
iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
y = np.zeros((len(iris.target), 3))
for idx, val in enumerate(iris.target):
y[idx, val] = 1
y_hat = net.predict(x)
训练类神经网络
epochs = 3000
lr = 0.01
train_loss = []
for i in range(epochs):
grad = net.numerical_gradient(x,y)
for key in ('W1', 'b1', 'W2', 'b2'):
net.params[key] = net.params[key] - lr * grad[key]
loss = net.loss(x, y)
train_loss.append(loss)
训练损失图
import matplotlib.pyplot as plt
plt.scatter(range(0,3000),train_loss)
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.show()
验证模型准确度
from sklearn.metrics import accuracy_score, confusion_matrix
#net.predict(x)
predicted = np.argmax(net.predict(x), axis=1)
# accuracy
sum(predicted == iris.target) / len(iris.target)
0.98
# accuracy
accuracy_score(iris.target, predicted)
0.98
# confusion matrix
confusion_matrix(iris.target, predicted)
array([[50, 0, 0],
[ 0, 47, 3],
[ 0, 0, 50]])
调整交叉熵
def cross_entropy_err(y_hat, y):
y = y.reshape(1, y.size)
y_hat = y_hat.reshape(1, y_hat.size)
batch_size = y_hat.shape[0]
return -np.sum(y * np.log(y_hat)) / batch_size
批次学习
net = ANN(input_size=4, hidden_size=5, output_size=3)
epochs = 3000
lr = 0.01
batch_size = 30
train_loss = []
for i in range(epochs):
idx = np.random.choice(iris.data.shape[0], batch_size)
x_batch = iris.data[idx]
y_batch = y[idx]
grad = net.numerical_gradient(x_batch,y_batch)
for key in ('W1', 'b1', 'W2', 'b2'):
net.params[key] = net.params[key] - lr * grad[key]
loss = net.loss(x_batch, y_batch)
train_loss.append(loss)
plt.scatter(range(0,3000),train_loss)
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.title('Training Loss')
from sklearn.metrics import accuracy_score, confusion_matrix
predicted = np.argmax(net.predict(x), axis=1)
# accuracy
sum(predicted == iris.target) / len(iris.target)
0.9733333333333334
# accuracy
accuracy_score(iris.target, predicted)
0.9733333333333334
# confusion matrix
confusion_matrix(iris.target, predicted)
array([[50, 0, 0],
[ 0, 46, 4],
[ 0, 0, 50]])