备份一下质量管理的笔记,顺便练习一下Markdown与KaTeX排版。

关键词: 质量管理 计量值 属性值 控制图 过程能力分析
Keywords: Quality Management, Variable Data, Attribute Data, Control Chart, Process Capability Analysis

Data Type & Fundamental Models

Variable Date

Examples

  • Cable wire diameter data
  • Piston ring diameter data
  • Connector pin data

Statistics Models

X ∼ N ( μ , σ ) X \sim N \left( \mu , \sigma \right) XN(μ,σ)
μ ^ = x ‾ σ ^ = { S s k e w e d    d i s t r u b u t i o n R ‾ / d 2 S / c 4 } u n b i a s e d    d i s t r u b u t i o n \hat{\mu} = \overline{x} \quad \hat{\sigma} = \left\{ \begin{array}{lr} S & skewed \; distrubution \\ \left. \begin{array}{l} \overline{R} / d_2 \\ S / c_4 \end{array} \right\} & unbiased \; distrubution \end{array}\right. μ^=xσ^=SR/d2S/c4}skeweddistrubutionunbiaseddistrubution

What if non-normal

  • Central limit theorems
    X ‾ = x 1 + x 2 + ⋯ + x n n \overline{X}=\frac{x_1+x_2+\dots+x_n}{n} X=nx1+x2++xn
    n ≥ 5 X ‾ ∼ N ( μ X ‾ , σ X ‾ ) n \ge 5 \quad \overline{X} \sim N \left( \mu_{\overline{X}} , \sigma_{\overline{X}} \right) n5XN(μX,σX)
    w h e r e μ X ‾ = μ X , σ X ‾ = σ X / n where \quad \mu_{\overline{X}} = \mu_X , \sigma_{\overline{X}} = \sigma_X / \sqrt{n} whereμX=μX,σX=σX/n
  • Box-Cox Transformation
  • Johnson Transformation

Number of defective units - Attribute Data

Examples

  • Fat content data (Number of overproof)
  • Engine winding reliability data
  • Muffler reliability data

Statistics Models

X ∼ B ( n , p ) X \sim B \left( n , p \right) XB(n,p)
P ( X = d ) = C n k p d q n − d E ( X ) = n p ‾ D ( X ) = n p ‾ ( 1 − p ‾ ) P(X=d)=C_n^k p^d q^{n-d} \quad E(X)=n \overline{p} \quad D(X)=n \overline{p} (1-\overline{p}) P(X=d)=CnkpdqndE(X)=npD(X)=np(1p)

What if non-normal

n p ≥ 5 np \ge 5 np5

Number of defects - Attribute Data

Examples

  • Customer complaints data
  • Television defects data
  • Post office customer visits data

Statistics Models

X ∼ P ( λ ) X \sim P(\lambda) XP(λ)
P ( X = d ) = λ d d ​ exp ⁡ − λ E ( X ) = λ D ( X ) = λ P(X=d)=\frac{\lambda^d}{d\!}\exp^{-\lambda} \quad E(X)=\lambda \quad D(X)=\lambda P(X=d)=dλdexpλE(X)=λD(X)=λ

What if non-normal

λ ≥ 5 \lambda \ge 5 λ5

  • Redefine ``Unite’’ :
  • DPU ⇒ \Rightarrow DPHU ⇒ \Rightarrow DPKU

Control Chart

Variable Data

X ‾ − R \overline{X}-R XR Control Chart

C L X ‾ = X ‾ ‾ = X ‾ 1 + X ‾ 2 + X ‾ 3 + ⋯ + X ‾ K K CL_{\overline{X}}=\overline{\overline{X}} =\frac{\overline{X}_1+\overline{X}_2+\overline{X}_3+\dots+\overline{X}_K}{K} CLX=X=KX1+X2+X3++XK
σ X ‾ = σ n = R ‾ / d 2 n A 2 = 3 1 d 2 n \sigma_{\overline{X}}=\frac{\sigma}{\sqrt{n}} =\frac{\overline{R}/d_2}{\sqrt{n}} \quad A_2=3\frac{1}{d_2\sqrt{n}} σX=n σ=n R/d2A2=3d2n 1
U C L X ‾ = X ‾ ‾ + 3 σ X ‾ = X ‾ ‾ + 3 1 d 2 n R ‾ = X ‾ ‾ + A 2 R ‾ UCL_{\overline{X}}=\overline{\overline{X}} +3\sigma_{\overline{X}} =\overline{\overline{X}}+3\frac{1}{d_2\sqrt{n}}\overline{R} =\overline{\overline{X}}+A_2\overline{R} UCLX=X+3σX=X+3d2n 1R=X+A2R
L C L X ‾ = X ‾ ‾ − 3 σ X ‾ = X ‾ ‾ − 3 1 d 2 n R ‾ = X ‾ ‾ − A 2 R ‾ LCL_{\overline{X}}=\overline{\overline{X}} -3\sigma_{\overline{X}} =\overline{\overline{X}}-3\frac{1}{d_2\sqrt{n}}\overline{R} =\overline{\overline{X}}-A_2\overline{R} LCLX=X3σX=X3d2n 1R=XA2R
C L R = R ‾ = R 1 + R 2 + R 3 + ⋯ + R K K CL_{R}=\overline{R} =\frac{R_1+R_2+R_3+\dots+R_K}{K} CLR=R=KR1+R2+R3++RK
D 4 = 1 + 3 d 2 d 3 D 3 = 1 − 3 d 2 d 3 D_4=1+3\frac{d_2}{d_3} \quad D_3=1-3\frac{d_2}{d_3} D4=1+3d3d2D3=13d3d2
U C L R = R ‾ + 3 σ R = R ‾ + 3 d 3 σ = R ‾ + 3 d 3 R ‾ d 2 = ( 1 + 3 d 2 d 3 ) R ‾ = D 4 R ‾ UCL_R=\overline{R}+3\sigma_R =\overline{R}+3d_3\sigma =\overline{R}+3d_3\frac{\overline{R}}{d_2} =\left(1+3\frac{d_2}{d_3}\right)\overline{R} =D_4\overline{R} UCLR=R+3σR=R+3d3σ=R+3d3d2R=(1+3d3d2)R=D4R
L C L R = R ‾ − 3 σ R = R ‾ − 3 d 3 σ = R ‾ − 3 d 3 R ‾ d 2 = ( 1 − 3 d 2 d 3 ) R ‾ = D 3 R ‾ LCL_R=\overline{R}-3\sigma_R =\overline{R}-3d_3\sigma =\overline{R}-3d_3\frac{\overline{R}}{d_2} =\left(1-3\frac{d_2}{d_3}\right)\overline{R} =D_3\overline{R} LCLR=R3σR=R3d3σ=R3d3d2R=(13d3d2)R=D3R

X ‾ − S \overline{X}-S XS Control Chart

When the sample size is large(n>6 or n ≥ \ge 10(other terms)) or varible, estimate S 2 S^2 S2 with σ 2 \sigma^2 σ2 : S 2 = ∑ i = 1 n ( x i − x ‾ ) 2 n − 1 S^2= \frac{\sum_{i=1}^{n}\left(x_i-\overline{x}\right)^2}{n-1} S2=n1i=1n(xix)2, E(S)= c 4 c_4 c4 σ \sigma σ, Std(S)= σ \sigma σ 1 − c 4 2 \sqrt{1-c_4^2} 1c42
C L X ‾ = X ‾ ‾ CL_{\overline{X}}=\overline{\overline{X}} CLX=X
U C L X ‾ = X ‾ ‾ + 3 σ X ‾ = X ‾ ‾ + 3 σ n = X ‾ ‾ + 3 S ‾ c 4 n = X ‾ ‾ + A 3 S ‾ UCL_{\overline{X}}=\overline{\overline{X}} +3\sigma_{\overline{X}} =\overline{\overline{X}} +3\frac{\sigma}{\sqrt{n}} =\overline{\overline{X}} +3\frac{\overline{S}}{c_4\sqrt{n}} =\overline{\overline{X}}+A_3\overline{S} UCLX=X+3σX=X+3n σ=X+3c4n S=X+A3S
L C L X ‾ = X ‾ ‾ − 3 σ X ‾ = X ‾ ‾ − 3 σ n = X ‾ ‾ − 3 S ‾ c 4 n = X ‾ ‾ − A 3 S ‾ LCL_{\overline{X}}=\overline{\overline{X}} -3\sigma_{\overline{X}} =\overline{\overline{X}} -3\frac{\sigma}{\sqrt{n}} =\overline{\overline{X}} -3\frac{\overline{S}}{c_4\sqrt{n}} =\overline{\overline{X}}-A_3\overline{S} LCLX=X3σX=X3n σ=X3c4n S=XA3S
U C L S = S ‾ + 3 σ 1 − c 4 2 = S ‾ + 3 S ‾ c 4 1 − c 4 2 = B 6 S ‾ UCL_S=\overline{S}+3\sigma\sqrt{1-c_4^2} =\overline{S}+3\frac{\overline{S}}{c_4}\sqrt{1-c_4^2}=B_6\overline{S} UCLS=S+3σ1c42 =S+3c4S1c42 =B6S
L C L S = S ‾ − 3 σ 1 − c 4 2 = S ‾ − 3 S ‾ c 4 1 − c 4 2 = B 5 S ‾ LCL_S=\overline{S}-3\sigma\sqrt{1-c_4^2} =\overline{S}-3\frac{\overline{S}}{c_4}\sqrt{1-c_4^2}=B_5\overline{S} LCLS=S3σ1c42 =S3c4S1c42 =B5S

X i − M R i X_i-MR_i XiMRi Control Chart (n=1)

M R i = ∣ x i − x i − 1 ∣ MR_i=\vert x_i-x_{i-1}\vert MRi=xixi1
U C L X ‾ = X ‾ + 3 σ = X ‾ + 3 M R ‾ d 2 = X ‾ + 2.66 M R ‾ UCL_{\overline{X}}=\overline{X}+3\sigma =\overline{X}+3\frac{\overline{MR}}{d_2} =\overline{X}+2.66\overline{MR} UCLX=X+3σ=X+3d2MR=X+2.66MR
U C L X ‾ = X ‾ − 3 σ = X ‾ − 3 M R ‾ d 2 = X ‾ − 2.66 M R ‾ UCL_{\overline{X}}=\overline{X}-3\sigma =\overline{X}-3\frac{\overline{MR}}{d_2} =\overline{X}-2.66\overline{MR} UCLX=X3σ=X3d2MR=X2.66MR
C L M R ‾ = M R ‾ CL_{\overline{MR}}=\overline{MR} CLMR=MR
U C L M R ‾ = D 4 M R ‾ = 3.267 M R ‾ UCL_{\overline{MR}}=D_4\overline{MR}=3.267\overline{MR} UCLMR=D4MR=3.267MR
L C L M R ‾ = 0 LCL_{\overline{MR}}=0 LCLMR=0

Number of defective units - Attribute Data

p-chart

C L = p ‾ CL=\overline{p} CL=p
U C L = p ‾ + 3 p ‾ ( 1 − p ‾ ) n UCL=\overline{p}+3\sqrt{\frac{\overline{p} (1-\overline{p})}{n}} UCL=p+3np(1p)
L C L = p ‾ − 3 p ‾ ( 1 − p ‾ ) n LCL=\overline{p}-3\sqrt{\frac{\overline{p} (1-\overline{p})}{n}} LCL=p3np(1p)

np-chart

C L = n p ‾ CL=n\overline{p} CL=np
U C L = n p ‾ + 3 n p ‾ ( 1 − p ‾ ) UCL=n\overline{p}+3\sqrt{n\overline{p}(1-\overline{p})} UCL=np+3np(1p)
L C L = n p ‾ + 3 n p ‾ ( 1 − p ‾ ) LCL=n\overline{p}+3\sqrt{n\overline{p}(1-\overline{p})} LCL=np+3np(1p)
( L C L = 0 , i f &ThickSpace; L C L &lt; 0 ) (LCL=0, if \; LCL&lt;0) (LCL=0,ifLCL<0)

Number of defects - Attribute Data

c-chart

Where n is fixed,
C L = c ‾ CL=\overline{c} CL=c
U C L = c ‾ + 3 c ‾ UCL=\overline{c}+3\sqrt{\overline{c}} UCL=c+3c
L C L = c ‾ − 3 c ‾ LCL=\overline{c}-3\sqrt{\overline{c}} LCL=c3c

u-chart

Where n is varible, and defects in units,
C L = u ‾ CL=\overline{u} CL=u
U C L = u ‾ + 3 u ‾ n UCL=\overline{u}+3\sqrt{\frac{\overline{u}}{n}} UCL=u+3nu
L C L = u ‾ − 3 u ‾ n LCL=\overline{u}-3\sqrt{\frac{\overline{u}}{n}} LCL=u3nu

Process Capability Analysis

Variable Data

σ ^ = S c 4 = ∑ i = 1 n ( x i − x ‾ ) 2 n − 1 / c 4 \hat{\sigma}=\frac{S}{c_4} =\left. \sqrt{\frac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}} \middle/ c_4 \right. σ^=c4S=n1i=1n(xix)2 /c4
σ ^ = R ‾ d 2 &MediumSpace; ( n &lt; 7 ) \hat{\sigma}=\frac{\overline{R}}{d_2}\:(n&lt;7) σ^=d2R(n<7)
Or for simplicity, use biased estimates σ ^ = S \hat{\sigma}=S σ^=S.
C p = U S L − L S L 6 σ C_p=\frac{USL-LSL}{6\sigma} Cp=6σUSLLSL
C p ^ = U S L − L S L 6 σ ^ \hat{C_p}=\frac{USL-LSL}{6\hat{\sigma}} Cp^=6σ^USLLSL
C P U = U S L − μ 3 σ C_{PU}=\frac{USL-\mu}{3\sigma} CPU=3σUSLμ
C P U ^ = U S L − X ^ 3 σ ^ \hat{C_{PU}}=\frac{USL-\hat{X}}{3\hat{\sigma}} CPU^=3σ^USLX^
P U = 1 − Φ ( U S L − μ σ ) = 1 − Φ ( 3 C P U ) = Φ ( − 3 C P U ) P_U=1-\Phi\left(\frac{USL-\mu}{\sigma}\right) =1-\Phi(3C_{PU})=\Phi(-3C_{PU}) PU=1Φ(σUSLμ)=1Φ(3CPU)=Φ(3CPU)
C P L = μ − L S L 3 σ C_{PL}=\frac{\mu-LSL}{3\sigma} CPL=3σμLSL
C P U ^ = X ^ − L S L 3 σ ^ \hat{C_{PU}}=\frac{\hat{X}-LSL}{3\hat{\sigma}} CPU^=3σ^X^LSL
P U = Φ ( U S L − μ σ ) = Φ ( 3 C P U ) = Φ ( − 3 C P U ) P_U=\Phi\left(\frac{USL-\mu}{\sigma}\right) =\Phi(3C_{PU})=\Phi(-3C_{PU}) PU=Φ(σUSLμ)=Φ(3CPU)=Φ(3CPU)
C P K = min ⁡ { C P U , C P L } = U S L − L S L − 2 Δ 6 σ = C P ( 1 − k ) C_{PK}=\min\{C_{PU},C_{PL}\}=\frac{USL-LSL-2\Delta}{6\sigma} =C_P(1-k) CPK=min{CPU,CPL}=6σUSLLSL2Δ=CP(1k)
where k = 2 Δ T &ThickSpace; Δ = ∣ σ − M ∣ &ThickSpace; M = U S L − L S L 2 &ThickSpace; T = U S L − L S L k=\frac{2\Delta}{T}\;\Delta=\vert\sigma-M\vert\; M=\frac{USL-LSL}{2}\;T=USL-LSL k=T2ΔΔ=σMM=2USLLSLT=USLLSL
When process mean coincides with the central tolerance,
D e f e c t i v e &MediumSpace; r a t e &MediumSpace; P = Φ ( L S L − μ σ ) + [ 1 − Φ ( U S L − μ σ ) ] = 2 × Φ ( L S L − μ σ ) = 2 × Φ ( − T / 2 σ ) = 2 × Φ ( − 3 C P ) \begin{array}{rl} Defective\:rate\:P&amp;=\Phi\left(\frac{LSL-\mu}{\sigma}\right)+\left[1-\Phi\left(\frac{USL-\mu}{\sigma}\right)\right]\\ &amp;=2\times\Phi\left(\frac{LSL-\mu}{\sigma}\right)\\ &amp;=2\times\Phi\left(\frac{-T/2}{\sigma}\right)\\ &amp;=2\times\Phi\left(-3C_P\right) \end{array} DefectiverateP=Φ(σLSLμ)+[1Φ(σUSLμ)]=2×Φ(σLSLμ)=2×Φ(σT/2)=2×Φ(3CP)
When process doesn’t coincides with the central tolerance,
D e f e c t i v e &MediumSpace; r a t e &MediumSpace; P = 2 − Φ [ 3 C P ( 1 − k ) ] − Φ [ 3 C P ( 1 + k ) ] Defective\:rate\:P=2-\Phi\left[3C_P(1-k)\right]-\Phi\left[3C_P(1+k)\right] DefectiverateP=2Φ[3CP(1k)]Φ[3CP(1+k)]
where k = ∣ μ − M ∣ T / 2 k=\frac{\vert\mu-M\vert}{T/2} k=T/2μM
C P M = U S L − L S L 6 ( μ − M ) 2 + σ 2 C_PM=\frac{USL-LSL}{6\sqrt{(\mu-M)^2+\sigma^2}} CPM=6(μM)2+σ2 USLLSL
M is the target value of the process.

Attribute Data

The DPU measures does not directly take the complexity of the unit into account. Opportunities are the number of potential chances within a unit for a defect to occur Eg. It is different to plug 100 cards and 10 cards in PCA, the defect opportunities are definitely different, the former has 10 defect opportunities and the latter has 100 defect opportunities. Defect Per Million Opportunities.(DPMO)is a standardized index considering taking the complexity of the unit into account. The equation of DPMO can be expressed as follows:
D P M O = D P U × 1 0 6 n u m b e r &MediumSpace; o f &MediumSpace; d e f e c t &MediumSpace; o p p o r t u n i t i e s &MediumSpace; a p p e a r &MediumSpace; i n &MediumSpace; u n i t &MediumSpace; p r o d u c t DPMO=\frac{DPU\times10^6}{number\:of\:defect \:opportunities\: appear\:in\: unit\: product} DPMO=numberofdefectopportunitiesappearinunitproductDPU×106
D P M O = N u m b e r &MediumSpace; o f &MediumSpace; D e f e c t s N u m b e r &MediumSpace; o f &MediumSpace; U n i t s × N u m b e r &MediumSpace; o f &MediumSpace; O p p o r t u n i t i e s &MediumSpace; p e r &MediumSpace; u n i t × 1 0 6 DPMO=\frac{Number\: of \:Defects}{Number\: of\: Units\times Number\: of\: Opportunities\: per\:unit}\times 10^6 DPMO=NumberofUnits×NumberofOpportunitiesperunitNumberofDefects×106

This is the end of this article, thanks for reading.

Tips: I found that in the CSDN markdown compiler, adding tab keys before paragraphs defaults to code fragments.