文章目录

  • 什么是RDD
  • 1.RDD属性:
  • 2.RDD特点:
  • 2.1 弹性
  • 2.2 分区
  • 2.3 只读
  • 2.4 依赖
  • 2.5 缓存
  • 2.6 CheckPoint
  • 3.RDD 编程
  • 3.1 RDD的创建
  • 3.2 RDD的转换


什么是RDD

RDD:弹性分布式数据集,Spark中最基本的数据抽象,弹性的,不可变,可分区,里面的元素可并行计算的集合。

1.RDD属性:

* Internally, each RDD is characterized by five main properties:
*
* - A list of partitions
* - A function for computing each split
* - A list of dependencies on other RDDs
* - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned)
* - Optionally, a list of preferred locations to compute each split on (e.g. block locations for
* an HDFS file)
*
* All of the scheduling and execution in Spark is done based on these methods, allowing each RDD
* to implement its own way of computing itself. Indeed, users can implement custom RDDs (e.g. for
* reading data from a new storage system) by overriding these functions. Please refer to the
* <a href="http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf">Spark paper</a>
* for more details on RDD internals.
*/
  1. 一组分区(Partition),即数据集的基本组成单位;
  2. 一个计算每个分区的函数;
  3. RDD之间的依赖关系;
  4. 一个Partitioner,即RDD的分片函数;
  5. 一个列表,存储存取每个Partition的优先位置(preferred location)。

2.RDD特点:

RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。RDDs之间存在依赖,RDD的执行是按照血缘关系延时计算的。如果血缘关系较长,可以通过持久化RDD来切断血缘关系。

2.1 弹性
  1. 存储的弹性:内存与磁盘的自动切换;
  2. 容错的弹性:数据丢失可以自动恢复;
  3. 计算的弹性:计算出错重试机制;
  4. 分片的弹性:可根据需要重新分片。
2.2 分区

  RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候会通过一个compute函数得到每个分区的数据。如果RDD是通过已有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。

2.3 只读

  RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。RDD的操作算子包括两类,一类叫做transformations,它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions,它是用来触发RDD的计算,得到RDD的相关计算结果或者将RDD保存的文件系统中。

2.4 依赖

  RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生所必需的信息,RDDs之间维护着这种血缘关系,也称之为依赖。如下图所示,依赖包括两种,一种是窄依赖,RDDs之间分区是一一对应的,另一种是宽依赖,下游RDD的每个分区与上游RDD(也称之为父RDD)的每个分区都有关,是多对多的关系。

SparkCore总结大全_scala

2.5 缓存

  如果在应用程序中多次使用同一个RDD,可以将该RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存处取而不用再根据血缘关系计算,这样就加速后期的重用。如下图所示,RDD-1经过一系列的转换后得到RDD-n并保存到hdfs,RDD-1在这一过程中会有个中间结果,如果将其缓存到内存,那么在随后的RDD-1转换到RDD-m这一过程中,就不会计算其之前的RDD-0了。

SparkCore总结大全_apache_02

2.6 CheckPoint

  虽然RDD的血缘关系天然地可以实现容错,当RDD的某个分区数据失败或丢失,可以通过血缘关系重建。但是对于长时间迭代型应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代过程中出错,则需要通过非常长的血缘关系去重建,势必影响性能。为此,RDD支持checkpoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为checkpoint后的RDD不需要知道它的父RDDs了,它可以从checkpoint处拿到数据。

缓存与CheckPoint的区别:缓存不会切断血缘关系,而CheckPoint会切断血缘关系

3.RDD 编程

3.1 RDD的创建

  在Spark中创建RDD的创建方式可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。

//使用parallelize()从集合创建
scala> val rdd = sc.parallelize(Array(1,2,3,4,5,6,7,8))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
//使用makeRDD()从集合创建
scala> val rdd1 = sc.makeRDD(Array(1,2,3,4,5,6,7,8))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at makeRDD at <console>:24
//由外部存储系统的数据集创建
//包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等,我们会在第4章详细介绍。
scala> val rdd2= sc.textFile("hdfs://hadoop102:9000/RELEASE")
rdd2: org.apache.spark.rdd.RDD[String] = hdfs://hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at <console>:24
//从其他RDD创建(略)
3.2 RDD的转换

RDD整体上分为Value类型和Key-Value类型

Value类型

1.map(func)案例

1. 作用:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
2. 需求:创建一个1-10数组的RDD,将所有元素*2形成新的RDD
(1)创建
scala> var source = sc.parallelize(1 to 10)
source: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24
(2)打印
scala> source.collect()
res7: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
(3)将所有元素*2
scala> val mapadd = source.map(_ * 2)
mapadd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at map at <console>:26
(4)打印最终结果
scala> mapadd.collect()
res8: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

2.mapPartitions(func) 案例

1. 作用:类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]。假设有N个元素,有M个分区,那么map的函数的将被调用N次,而mapPartitions被调用M次,一个函数一次处理所有分区。
2. 需求:创建一个RDD,使每个元素*2组成新的RDD
(1)创建一个RDD
scala> val rdd = sc.parallelize(Array(1,2,3,4))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:24
(2)使每个元素*2组成新的RDD
scala> rdd.mapPartitions(x=>x.map(_*2))
res3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[6] at mapPartitions at <console>:27
(3)打印新的RDD
scala> res3.collect
res4: Array[Int] = Array(2, 4, 6, 8)

3.mapPartitions(func) 案例

1. 作用:类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]
2. 需求:创建一个RDD,使每个元素跟所在分区形成一个元组组成一个新的RDD
(1)创建一个RDD
scala> val rdd = sc.parallelize(Array(1,2,3,4))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:24
(2)使每个元素跟所在分区形成一个元组组成一个新的RDD
scala> val indexRdd = rdd.mapPartitionsWithIndex((index,items)=>(items.map((index,_))))
indexRdd: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[5] at mapPartitionsWithIndex at <console>:26
(3)打印新的RDD
scala> indexRdd.collect
res2: Array[(Int, Int)] = Array((0,1), (0,2), (1,3), (1,4))

4.map()和mapPartition()的区别

  1. map():每次处理一条数据。
  2. mapPartition():每次处理一个分区的数据,这个分区的数据处理完后,原RDD中分区的数据才能释放,可能导致OOM。
  3. 开发指导:当内存空间较大的时候建议使用mapPartition(),以提高处理效率。

5 flatMap(func) 案例

1. 作用:类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
2. 需求:创建一个元素为1-5的RDD,运用flatMap创建一个新的RDD,新的RDD为原RDD的每个元素的扩展(1->1,2->1,2……5->1,2,3,4,5
(1)创建
scala> val sourceFlat = sc.parallelize(1 to 5)
sourceFlat: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at parallelize at <console>:24
(2)打印
scala> sourceFlat.collect()
res11: Array[Int] = Array(1, 2, 3, 4, 5)
(3)根据原RDD创建新RDD(1->1,2->1,2……5->1,2,3,4,5
scala> val flatMap = sourceFlat.flatMap(1 to _)
flatMap: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[13] at flatMap at <console>:26
(4)打印新RDD
scala> flatMap.collect()
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5)

6 glom案例

1. 作用:将每一个分区形成一个数组,形成新的RDD类型时RDD[Array[T]]
2. 需求:创建一个4个分区的RDD,并将每个分区的数据放到一个数组
(1)创建
scala> val rdd = sc.parallelize(1 to 16,4)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[65] at parallelize at <console>:24
(2)将每个分区的数据放到一个数组并收集到Driver端打印
scala> rdd.glom().collect()
res25: Array[Array[Int]] = Array(Array(1, 2, 3, 4), Array(5, 6, 7, 8), Array(9, 10, 11, 12), Array(13, 14, 15, 16))

7 groupBy(func)案例

1. 作用:分组,按照传入函数的返回值进行分组。将相同的key对应的值放入一个迭代器。
2. 需求:创建一个RDD,按照元素模以2的值进行分组。
(1)创建
scala> val rdd = sc.parallelize(1 to 4)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[65] at parallelize at <console>:24
(2)按照元素模以2的值进行分组
scala> val group = rdd.groupBy(_%2)
group: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[2] at groupBy at <console>:26
(3)打印结果
scala> group.collect
res0: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(2, 4)), (1,CompactBuffer(1, 3)))

8 filter(func) 案例

1. 作用:过滤。返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成。
2. 需求:创建一个RDD(由字符串组成),过滤出一个新RDD(包含”xiao”子串)
(1)创建
scala> var sourceFilter = sc.parallelize(Array("xiaoming","xiaojiang","xiaohe","dazhi"))
sourceFilter: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[10] at parallelize at <console>:24
(2)打印
scala> sourceFilter.collect()
res9: Array[String] = Array(xiaoming, xiaojiang, xiaohe, dazhi)
(3)过滤出含” xiao”子串的形成一个新的RDD
scala> val filter = sourceFilter.filter(_.contains("xiao"))
filter: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at filter at <console>:26
(4)打印新RDD
scala> filter.collect()
res10: Array[String] = Array(xiaoming, xiaojiang, xiaohe)

9 sample(withReplacement, fraction, seed) 案例

1. 作用:以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样,seed用于指定随机数生成器种子。
2. 需求:创建一个RDD(1-10),从中选择放回和不放回抽样
(1)创建RDD
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at <console>:24
(2)打印
scala> rdd.collect()
res15: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
(3)放回抽样
scala> var sample1 = rdd.sample(true,0.4,2)
sample1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[21] at sample at <console>:26
(4)打印放回抽样结果
scala> sample1.collect()
res16: Array[Int] = Array(1, 2, 2, 7, 7, 8, 9)
(5)不放回抽样
scala> var sample2 = rdd.sample(false,0.2,3)
sample2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[22] at sample at <console>:26
(6)打印不放回抽样结果
scala> sample2.collect()
res17: Array[Int] = Array(1, 9)
/**
* Return a sampled subset of this RDD.
*
* @param withReplacement can elements be sampled multiple times (replaced when sampled out)
* @param fraction expected size of the sample as a fraction of this RDD's size
* without replacement: probability that each element is chosen; fraction must be [0, 1]
* with replacement: expected number of times each element is chosen; fraction must be greater
* than or equal to 0
* @param seed seed for the random number generator
*
* @note This is NOT guaranteed to provide exactly the fraction of the count
* of the given [[RDD]].
*/

10 distinct([numTasks])) 案例

1. 作用:对源RDD进行去重后返回一个新的RDD。
2. 需求:创建一个RDD,使用distinct()对其去重。
(1)创建一个RDD
scala> val distinctRdd = sc.parallelize(List(1,2,1,5,2,9,6,1))
distinctRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[34] at parallelize at <console>:24
(2)对RDD进行去重(不指定并行度)
scala> val unionRDD = distinctRdd.distinct()
unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[37] at distinct at <console>:26
(3)打印去重后生成的新RDD
scala> unionRDD.collect()
res20: Array[Int] = Array(1, 9, 5, 6, 2)
(4)对RDD(指定并行度为2)
scala> val unionRDD = distinctRdd.distinct(2)
unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[40] at distinct at <console>:26
(5)打印去重后生成的新RDD
scala> unionRDD.collect()
res21: Array[Int] = Array(6, 2, 1, 9, 5)

11 coalesce(numPartitions) 案例

1. 作用:缩减分区数,用于大数据集过滤后,提高小数据集的执行效率。
2. 需求:创建一个4个分区的RDD,对其缩减分区
(1)创建一个RDD
scala> val rdd = sc.parallelize(1 to 16,4)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at <console>:24
(2)查看RDD的分区数
scala> rdd.partitions.size
res20: Int = 4
(3)对RDD重新分区
scala> val coalesceRDD = rdd.coalesce(3)
coalesceRDD: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[55] at coalesce at <console>:26
(4)查看新RDD的分区数
scala> coalesceRDD.partitions.size
res21: Int = 3

12 repartition(numPartitions) 案例

1. 作用:根据分区数,重新通过网络随机洗牌所有数据。
2. 需求:创建一个4个分区的RDD,对其重新分区
(1)创建一个RDD
scala> val rdd = sc.parallelize(1 to 16,4)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[56] at parallelize at <console>:24
(2)查看RDD的分区数
scala> rdd.partitions.size
res22: Int = 4
(3)对RDD重新分区
scala> val rerdd = rdd.repartition(2)
rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[60] at repartition at <console>:26
(4)查看新RDD的分区数
scala> rerdd.partitions.size
res23: Int = 2

13 coalesce和repartition的区别

  1. coalesce重新分区,可以选择是否进行shuffle过程。由参数shuffle: Boolean = false/true决定。
  2. repartition实际上是调用的coalesce,进行shuffle。源码如下:
    def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
    }
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
/********************************************/
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T] = withScope {
require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.")
if (shuffle) {
/** Distributes elements evenly across output partitions, starting from a random partition. */
val distributePartition = (index: Int, items: Iterator[T]) => {
var position = (new Random(index)).nextInt(numPartitions)
items.map { t =>
// Note that the hash code of the key will just be the key itself. The HashPartitioner
// will mod it with the number of total partitions.
position = position + 1
(position, t)
}
} : Iterator[(Int, T)]

// include a shuffle step so that our upstream tasks are still distributed
new CoalescedRDD(
new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
new HashPartitioner(numPartitions)),
numPartitions,
partitionCoalescer).values
} else {
new CoalescedRDD(this, numPartitions, partitionCoalescer)
}
}

14 sortBy(func,[ascending], [numTasks]) 案例

1. 作用;使用func先对数据进行处理,按照处理后的数据比较结果排序,默认为正序。
2. 需求:创建一个RDD,按照不同的规则进行排序
(1)创建一个RDD
scala> val rdd = sc.parallelize(List(2,1,3,4))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[21] at parallelize at <console>:24
(2)按照自身大小排序
scala> rdd.sortBy(x => x).collect()
res11: Array[Int] = Array(1, 2, 3, 4)
(3)按照与3余数的大小排序
scala> rdd.sortBy(x => x%3).collect()
res12: Array[Int] = Array(3, 4, 1, 2)

15 pipe(command, [envVars]) 案例

1. 作用:管道,针对每个分区,都执行一个shell脚本,返回输出的RDD。
注意:脚本需要放在Worker节点可以访问到的位置
2. 需求:编写一个脚本,使用管道将脚本作用于RDD上。
(1)编写一个脚本
Shell脚本
#!/bin/sh
echo "AA"
while read LINE; do
echo ">>>"${LINE}
done
(2)创建一个只有一个分区的RDD
scala> val rdd = sc.parallelize(List("hi","Hello","how","are","you"),1)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[50] at parallelize at <console>:24
(3)将脚本作用该RDD并打印
scala> rdd.pipe("/opt/module/spark/pipe.sh").collect()
res18: Array[String] = Array(AA, >>>hi, >>>Hello, >>>how, >>>are, >>>you)
(4)创建一个有两个分区的RDD
scala> val rdd = sc.parallelize(List("hi","Hello","how","are","you"),2)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[52] at parallelize at <console>:24
(5)将脚本作用该RDD并打印
scala> rdd.pipe("/opt/module/spark/pipe.sh").collect()
res19: Array[String] = Array(AA, >>>hi, >>>Hello, AA, >>>how, >>>are, >>>you)

双Value类型交互

1 union(otherDataset) 案例

1. 作用:对源RDD和参数RDD求并集后返回一个新的RDD
2. 需求:创建两个RDD,求并集
(1)创建第一个RDD
scala> val rdd1 = sc.parallelize(1 to 5)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:24
(2)创建第二个RDD
scala> val rdd2 = sc.parallelize(5 to 10)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:24
(3)计算两个RDD的并集
scala> val rdd3 = rdd1.union(rdd2)
rdd3: org.apache.spark.rdd.RDD[Int] = UnionRDD[25] at union at <console>:28
(4)打印并集结果
scala> rdd3.collect()
res18: Array[Int] = Array(1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10)

2 subtract (otherDataset) 案例

1. 作用:计算差的一种函数,去除两个RDD中相同的元素,不同的RDD将保留下来
2. 需求:创建两个RDD,求第一个RDD与第二个RDD的差集
(1)创建第一个RDD
scala> val rdd = sc.parallelize(3 to 8)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[70] at parallelize at <console>:24
(2)创建第二个RDD
scala> val rdd1 = sc.parallelize(1 to 5)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[71] at parallelize at <console>:24
(3)计算第一个RDD与第二个RDD的差集并打印
scala> rdd.subtract(rdd1).collect()
res27: Array[Int] = Array(8, 6, 7)

3 intersection(otherDataset) 案例

1. 作用:对源RDD和参数RDD求交集后返回一个新的RDD
2. 需求:创建两个RDD,求两个RDD的交集
(1)创建第一个RDD
scala> val rdd1 = sc.parallelize(1 to 7)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[26] at parallelize at <console>:24
(2)创建第二个RDD
scala> val rdd2 = sc.parallelize(5 to 10)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:24
(3)计算两个RDD的交集
scala> val rdd3 = rdd1.intersection(rdd2)
rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[33] at intersection at <console>:28
(4)打印计算结果
scala> rdd3.collect()
res19: Array[Int] = Array(5, 6, 7)

4 cartesian(otherDataset) 案例

1. 作用:笛卡尔积(尽量避免使用)
2. 需求:创建两个RDD,计算两个RDD的笛卡尔积
(1)创建第一个RDD
scala> val rdd1 = sc.parallelize(1 to 3)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[47] at parallelize at <console>:24
(2)创建第二个RDD
scala> val rdd2 = sc.parallelize(2 to 5)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[48] at parallelize at <console>:24
(3)计算两个RDD的笛卡尔积并打印
scala> rdd1.cartesian(rdd2).collect()
res17: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5))

5 zip(otherDataset)案例

1. 作用:将两个RDD组合成Key/Value形式的RDD,**这里默认两个RDD的partition数量以及元素数量都相同,否则会抛出异常。**
2. 需求:创建两个RDD,并将两个RDD组合到一起形成一个(k,v)RDD
(1)创建第一个RDD
scala> val rdd1 = sc.parallelize(Array(1,2,3),3)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
(2)创建第二个RDD(与1分区数相同)
scala> val rdd2 = sc.parallelize(Array("a","b","c"),3)
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[2] at parallelize at <console>:24
(3)第一个RDD组合第二个RDD并打印
scala> rdd1.zip(rdd2).collect
res1: Array[(Int, String)] = Array((1,a), (2,b), (3,c))
(4)第二个RDD组合第一个RDD并打印
scala> rdd2.zip(rdd1).collect
res2: Array[(String, Int)] = Array((a,1), (b,2), (c,3))
(5)创建第三个RDD(与1,2分区数不同)
scala> val rdd3 = sc.parallelize(Array("a","b","c"),2)
rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:24
(6)第一个RDD组合第三个RDD并打印
scala> rdd1.zip(rdd3).collect
java.lang.IllegalArgumentException: Can't zip RDDs with unequal numbers of partitions: List(3, 2)
at org.apache.spark.rdd.ZippedPartitionsBaseRDD.getPartitions(ZippedPartitionsRDD.scala:57)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
... 48 elided