嘟嘟嘟
题意:1.在直角坐标系中加入一条直线。2.求横坐标为\(x\)时最大的函数值。
然后有一个叫李超线段树的东西专门解决这样一类问题。
很巧妙,也很简单。
我就直接给几个链接吧。
[JSOI2008]Blue Mary开公司(李超线段树)
李超线段树
第二篇博客复杂度写错了,修改查询都应该是\(O(logn)\)的。
我的理解就是当前区间只存暴露最多的直线,而剩下的可能成为最优解的直线会在递归子区间的时候查到。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cctype>
#include<map>
#include<queue>
#include<vector>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxt = 5e5 + 5;
In ll read()
{
ll ans = 0;
char ch = getchar(), las = ' ';
while(!isdigit(ch)) las = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(las == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen("ha.in", "r", stdin);
freopen("ha.out", "w", stdout);
#endif
}
int n;
char s[20];
struct Line
{
db b, k;
friend In db Y(Line a, int x) {return a.k * (x - 1) + a.b;}
}t[maxt << 2];
int l[maxt << 2], r[maxt << 2];
In void build(int L, int R, int now)
{
l[now] = L, r[now] = R;
t[now] = (Line){0, 0};
if(L == R) return;
int mid = (L + R) >> 1;
build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1);
}
In void update(int L, int R, int now, Line c)
{
if(L == R)
{
if(Y(c, L) > Y(t[now], L)) t[now] = c;
return;
}
int mid = (L + R) >> 1;
db y1 = Y(t[now], mid), y2 = Y(c, mid);
if(c.k > t[now].k)
{
if(y2 > y1) update(L, mid, now << 1, t[now]), t[now] = c;
else update(mid + 1, R, now << 1 | 1, c);
}
else
{
if(y1 > y2) update(L, mid, now << 1, c);
else update(mid + 1, R, now << 1 | 1, t[now]), t[now] = c;
}
}
In db query(int id, int now)
{
if(l[now] == r[now]) return Y(t[now], l[now]);
int mid = (l[now] + r[now]) >> 1;
db ret = Y(t[now], id);
if(id <= mid) ret = max(ret, query(id, now << 1));
else ret = max(ret, query(id, now << 1 | 1));
return ret;
}
int main()
{
// MYFILE();
n = read();
build(1, maxt - 1, 1);
for(int i = 1; i <= n; ++i)
{
scanf("%s", s);
if(s[0] == 'P')
{
db b, k; scanf("%lf%lf", &b, &k);
update(1, maxt - 1, 1, (Line){b, k});
}
else write(query(read(), 1) / 100), enter;
}
return 0;
}