嘟嘟嘟

 

树形dp水题啦。

刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了。

仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边。对于第一个,可以(u, v)两个点都不放,然而对于这道题就不行了。

不过dp方程更简单:dp[u][0/1]表示u这个点不放/放士兵的最优答案。那么:

不放:则u的所有儿子必须放,才能覆盖所有相邻的边:dp[u][0] = Σdp[v][1]

放:则u的儿子可放可不放:dp[u][1] = Σmin{dp[v][0], dp[v][1]} + 1

完啦

luogu P2016 战略游戏_C  教程luogu P2016 战略游戏_C  教程_02
 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<cstring>
 6 #include<cstdlib>
 7 #include<cctype>
 8 #include<vector>
 9 #include<stack>
10 #include<queue>
11 using namespace std;
12 #define enter puts("") 
13 #define space putchar(' ')
14 #define Mem(a, x) memset(a, x, sizeof(a))
15 #define rg register
16 typedef long long ll;
17 typedef double db;
18 const int INF = 0x3f3f3f3f;
19 const db eps = 1e-8;
20 const int maxn = 1505;
21 inline ll read()
22 {
23     ll ans = 0;
24     char ch = getchar(), last = ' ';
25     while(!isdigit(ch)) {last = ch; ch = getchar();}
26     while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
27     if(last == '-') ans = -ans;
28     return ans;
29 }
30 inline void write(ll x)
31 {
32     if(x < 0) x = -x, putchar('-');
33     if(x >= 10) write(x / 10);
34     putchar(x % 10 + '0');
35 }
36 
37 int n;
38 
39 struct Edge
40 {
41     int nxt, to;
42 }e[maxn << 1];
43 int head[maxn], ecnt = -1;
44 void addEdge(int x, int y)
45 {
46     e[++ecnt] = (Edge){head[x], y};
47     head[x] = ecnt;
48 }
49 
50 ll dp[maxn][2];
51 void dfs(int now, int f)
52 {
53     dp[now][1] = 1;
54     for(int i = head[now], v; i != -1; i = e[i].nxt)
55     {
56         v = e[i].to;
57         if(v == f) continue;
58         dfs(v, now);
59         dp[now][0] += dp[v][1];
60         dp[now][1] += min(dp[v][0], dp[v][1]);
61     }
62 }
63 
64 int main()
65 {
66     Mem(head, -1);
67     n = read();
68     for(int i = 1; i <= n; ++i)
69     {
70         int x = read(), k = read(); x++;
71         for(int j = 1; j <= k; ++j)
72         {
73             int y = read(); y++;
74             addEdge(x, y); addEdge(y, x);
75         }
76     }
77     dfs(1, 0);
78     write(min(dp[1][0], dp[1][1])), enter;
79     return 0;
80 }
View Code