Hard!

题目描述:

有两个大小为 m 和 n 的排序数组 nums1 和 nums2 。

请找出两个排序数组的中位数并且总的运行时间复杂度为 O(log (m+n)) 。

示例 1:

nums1 = [1, 3]
nums2 = [2]

中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

中位数是 (2 + 3)/2 = 2.5

解题思路:

这道题让我们求两个有序数组的中位数,而且限制了时间复杂度为O(log (m+n)),看到这个时间复杂度,自然而然的想到了应该使用二分查找法来求解。但是这道题被定义为Hard也是有其原因的,难就难在要在两个未合并的有序数组之间使用二分法,这里我们需要定义一个函数来找到第K个元素,由于两个数组长度之和的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。下面重点来看如何实现找到第K个元素,首先我们需要让数组1的长度小于或等于数组2的长度,那么我们只需判断如果数组1的长度大于数组2的长度的话,交换两个数组即可,然后我们要判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。

知识点回顾:

中位数的概念

中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
 
 C++参考答案一:
 1 class Solution {
 2 public:
 3     double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
 4         int total = nums1.size() + nums2.size();
 5         if (total % 2 == 1) {
 6             return findKth(nums1, 0, nums2, 0, total / 2 + 1);
 7         } else {
 8             return (findKth(nums1, 0, nums2, 0, total / 2) + findKth(nums1, 0, nums2, 0, total / 2 + 1)) / 2;
 9         }
10     }
11     double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k) {
12         if (nums1.size() - i > nums2.size() - j) return findKth(nums2, j, nums1, i, k);
13         if (nums1.size() == i) return nums2[j + k - 1];
14         if (k == 1) return min(nums1[i], nums2[j]);
15         int pa = min(i + k / 2, int(nums1.size())), pb = j + k - pa + i;
16         if (nums1[pa - 1] < nums2[pb - 1]) 
17             return findKth(nums1, pa, nums2, j, k - pa + i);
18         else if (nums1[pa - 1] > nums2[pb - 1]) 
19             return findKth(nums1, i, nums2, pb, k - pb + j);
20         else 
21             return nums1[pa - 1];
22     }
23 };

上面的方法变量太多,较为复杂,我们也可以通过在findKth函数中改变数组元素的个数来去掉一些变量,使代码整体看起来更加简洁清楚,参见代码如下:

 C++参考答案二:

 1 class Solution {
 2 public:
 3     double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
 4         int m = nums1.size(), n = nums2.size();
 5         return (findKth(nums1, nums2, (m + n + 1) / 2) + findKth(nums1, nums2, (m + n + 2) / 2)) / 2.0;
 6     }
 7     int findKth(vector<int> nums1, vector<int> nums2, int k) {
 8         int m = nums1.size(), n = nums2.size();
 9         if (m > n) return findKth(nums2, nums1, k);
10         if (m == 0) return nums2[k - 1];
11         if (k == 1) return min(nums1[0], nums2[0]);
12         int i = min(m, k / 2), j = min(n, k / 2);
13         if (nums1[i - 1] > nums2[j - 1]) {
14             return findKth(nums1, vector<int>(nums2.begin() + j, nums2.end()), k - j);
15         } else {
16             return findKth(vector<int>(nums1.begin() + i, nums1.end()), nums2, k - i);
17         }
18         return 0;
19     }
20 };

此题还能用二分搜索法来解,是一种相当巧妙的应用。讲解详见:https://leetcode.com/problems/median-of-two-sorted-arrays/discuss/2471/very-concise-ologminmn-iterative-solution-with-detailed-explanation

C++参考答案三:

 1 class Solution {
 2 public:
 3     double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
 4         int m = nums1.size(), n = nums2.size();
 5         if (m < n) return findMedianSortedArrays(nums2, nums1);
 6         if (n == 0) return ((double)nums1[(m - 1) / 2] + (double)nums1[m / 2]) / 2.0;
 7         int left = 0, right = n * 2;
 8         while (left <= right) {
 9             int mid2 = (left + right) / 2;
10             int mid1 = m + n - mid2;
11             double L1 = mid1 == 0 ? INT_MIN : nums1[(mid1 - 1) / 2];
12             double L2 = mid2 == 0 ? INT_MIN : nums2[(mid2 - 1) / 2];
13             double R1 = mid1 == m * 2 ? INT_MAX : nums1[mid1 / 2];
14             double R2 = mid2 == n * 2 ? INT_MAX : nums2[mid2 / 2];
15             if (L1 > R2) left = mid2 + 1;
16             else if (L2 > R1) right = mid2 - 1;
17             else return (max(L1, L2) + min(R1, R2)) / 2;
18         }
19         return -1;
20     }
21 };