from pyspark.mllib.linalg import SparseVector
from collections import Counter

from pyspark import SparkContext

if __name__ == "__main__":

sc = SparkContext('local', 'term_doc')
corpus = sc.parallelize([
"It is the east, and Juliet is the sun.",
"A dish fit for the gods.",
"Brevity is the soul of wit."])

tokens = corpus.map(lambda raw_text: raw_text.split()).cache()
local_vocab_map = tokens.flatMap(lambda token: token).distinct().zipWithIndex().collectAsMap()

vocab_map = sc.broadcast(local_vocab_map)
vocab_size = sc.broadcast(len(local_vocab_map))

term_document_matrix = tokens \
.map(Counter) \
.map(lambda counts: {vocab_map.value[token]: float(counts[token]) for token in counts}) \
.map(lambda index_counts: SparseVector(vocab_size.value, index_counts))

for doc in term_document_matrix.collect():
print( doc)
(16,[0,1,2,3,4,5,6],[1.0,2.0,2.0,1.0,1.0,1.0,1.0])
(16,[2,7,8,9,10,11],[1.0,1.0,1.0,1.0,1.0,1.0])
(16,[1,2,12,13,14,15],[1.0,1.0,1.0,1.0,1.0,1.0])