题目描述
Z城市居住着很多只跳蚤。在Z城市周六生活频道有一个娱乐节目。一只跳蚤将被请上一个高空钢丝的正中央。钢丝很长,可以看作是无限长。节目主持人会给该跳蚤发一张卡片。卡片上写有N+1个自然数。其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字。跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度。而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物。
比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成任务:他可以先向左跳10个单位长度,然后再连向左跳3次,每次15个单位长度,最后再向右连跳3次,每次18个单位长度。而持有卡片(12, 15, 18)的跳蚤,则怎么也不可能跳到距他左边一个单位长度的地方。
当确定N和M后,显然一共有MN张不同的卡片。现在的问题是,在这所有的卡片中,有多少张可以完成任务。
输入输出格式
输入格式:
输入文件有且仅有一行,包括用空格分开的两个整数N和M。
输出格式:
输出文件有且仅有一行,即可以完成任务的卡片数。
1\le N\le M\le 10^81≤N≤M≤108,且M^N\le 10^{16}MN≤1016。
输入输出样例
说明
这12张卡片分别是:
(1, 1, 4), (1, 2, 4), (1, 3, 4), (1, 4, 4), (2, 1, 4), (2, 3, 4),
(3, 1, 4), (3, 2, 4), (3, 3, 4), (3, 4, 4), (4, 1, 4), (4, 3, 4)
Solution:
本题容斥+暴力枚举。
因为要向左移动1位,所以可以得到一个线性方程$a_1x_1+a_2x_2+…+a_nx_n=1$,满足有解的情况时,由裴蜀定理得$gcd(x_1,x_2…,x_n)=1$,我们只要满足任意两个数$gcd(x_i,x_j)=1$就好了。
我们先求出总的方案数$m^n$,再从中减去所有的整体gcd不为1的情况,由于整体gcd不为1的情况必须满足gcd为m的约数。
于是我们枚举m的约数作为整体公约数,对于约数$a$,共有$\frac{m}{a}$个含约数a的数,那么减去$(\frac{m}{a})^n$,然后由于会重复减,所以还得容斥,由于枚举的是m的因子,所以容斥时可以直接用莫比乌斯函数咯,所以只要求$\sum_\limits{d|m}^{m}{\mu(d)*(\frac{m}{d})^n}$就行啦。
代码:
/*Code by 520 -- 9.9*/ #include<bits/stdc++.h> #define il inline #define ll long long #define RE register #define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++) #define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--) using namespace std; ll n,m,ans; int prime[40005],cnt; int u(int x){ if(x==1)return 1; int num=0; for(RE int i=2;i*i<=x;i++){ if(x%i==0) { num++; RE int p=0; while(x%i==0) { x/=i,p++; if(p>1)return 0; } } } if(x>1) num++; return num&1?-1:1; } ll fast(ll s,ll k){ ll ans=1; while(k){ if(k&1)ans=ans*s; k>>=1; s*=s; } return ans; } void dfs(int now,ll s){ if(now>cnt) {ans+=u(s)*fast(m/s,n);return;} dfs(now+1,s),dfs(now+1,s*prime[now]); } int main(){ cin>>n>>m; int x=m; for(RE int i=2;i*i<=m;i++) if(x%i==0){ prime[++cnt]=i; while(x%i==0) x/=i; } if(x>1) prime[++cnt]=x; dfs(1,1); cout<<ans; return 0; }