一、mutex头文件的介绍

Mutex 又称互斥量,C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 <mutex> 头文件中,所以如果你需要使用 std::mutex,就必须包含 <mutex> 头文件。规范

下面是mutex头文件中内容:


c++ 11 多线线程系列----mutex_c++ mutex

mutex类4种
        std::mutex,最基本的 Mutex 类。
        std::recursive_mutex,递归 Mutex 类。
        std::time_mutex,定时 Mutex 类。
        std::recursive_timed_mutex,定时递归 Mutex 类。
Lock 类(两种)
        std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
        std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
其他类型   
        std::once_flag
        std::adopt_lock_t
        std::defer_lock_t
        std::try_to_lock_t
函数
        std::try_lock,尝试同时对多个互斥量上锁。
        std::lock,可以同时对多个互斥量上锁。
std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。


二、meutex类的介绍


c++ 11 多线线程系列----mutex_c++ mutex_02


std::mutex 介绍


下面以 std::mutex 为例介绍 C++11 中的互斥量用法。

std::mutex 是C++11 中最基本的互斥量,std::mutex 对象提供了独占所有权的特性——即不支持递归地对 std::mutex 对象上锁,而 std::recursive_lock 则可以递归地对互斥量对象上锁。

std::mutex 的成员函数

            1、构造函数,std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。

            2、lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:(1). 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。(2). 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

           3、unlock(), 解锁,释放对互斥量的所有权。

           4、try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况,(1). 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。(2). 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。

来看一个mutex的用法:

// mutex example
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex

std::mutex mtx; // mutex for critical section

void print_block(int n, char c) {
// critical section (exclusive access to std::cout signaled by locking mtx):
mtx.lock();
for (int i = 0; i<n; ++i) { std::cout << c; }
std::cout << '\n';
mtx.unlock();
}

int main()
{
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');

th1.join();
th2.join();

return 0;
}

c++ 11 多线线程系列----mutex_#include_03



如果不使用mutex那么输出可能是这样的:个线程之间存在乱码

c++ 11 多线线程系列----mutex_#include_04


三、recursive_mutex类的介绍

std::recursive_mutex 与 std::mutex 一样,也是一种可以被上锁的对象,但是和 std::mutex 不同的是,std::recursive_mutex 允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,std::recursive_mutex 释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),可理解为 lock() 次数和 unlock() 次数相同,除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。

四、time_mutex类的介绍

std::time_mutex 比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until()。

try_lock_for 函数接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

try_lock_until 函数则接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

下面的小例子说明了 std::time_mutex 的用法(​​参考​​)。

#include <iostream>       // std::cout
#include <chrono> // std::chrono::milliseconds
#include <thread> // std::thread
#include <mutex> // std::timed_mutex

std::timed_mutex mtx;

void fireworks() {
// waiting to get a lock: each thread prints "-" every 200ms:
while (!mtx.try_lock_for(std::chrono::milliseconds(200))) {
std::cout << "-";
}
// got a lock! - wait for 1s, then this thread prints "*"
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::cout << "*\n";
mtx.unlock();
}

int main ()
{
std::thread threads[10];
// spawn 10 threads:
for (int i=0; i<10; ++i)
threads[i] = std::thread(fireworks);

for (auto& th : threads) th.join();

return 0;
}


c++ 11 多线线程系列----mutex_mutex_05



五、std::recursive_timed_mutex类的介绍

和 std:recursive_mutex 与 std::mutex 的关系一样,std::recursive_timed_mutex 的特性也可以从 std::timed_mutex 推导出来,感兴趣的同鞋可以自行查阅


六、lock类的介绍

    (1)std::lock_guard 介绍
     std::lock_gurad 是 C++11 中定义的模板类。定义如下:
                 template <class Mutex> class lock_guard;

       lock_guard 对象通常用于管理某个锁(Lock)对象,因此与 Mutex RAII 相关,方便线程对互斥量上锁,即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁(注:类似 shared_ptr 等智能指针管理动态分配的内存资源)。

       模板参数 Mutex 代表互斥量类型,例如 std::mutex 类型,它应该是一个基本的 BasicLockable 类型,标准库中定义几种基本的 BasicLockable 类型,分别 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex(以上四种类型均已在上一篇博客中介绍)以及 std::unique_lock(本文后续会介绍 std::unique_lock)。(注:BasicLockable 类型的对象只需满足两种操作,lock 和 unlock,另外还有 Lockable 类型,在 BasicLockable 类型的基础上新增了 try_lock 操作,因此一个满足 Lockable 的对象应支持三种操作:lock,unlock 和 try_lock;最后还有一种 TimedLockable 对象,在 Lockable 类型的基础上又新增了 try_lock_for 和 try_lock_until 两种操作,因此一个满足 TimedLockable 的对象应支持五种操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。 

        在 lock_guard 对象构造时,传入的 Mutex 对象(即它所管理的 Mutex 对象)会被当前线程锁住。在lock_guard 对象被析构时,它所管理的 Mutex 对象会自动解锁,由于不需要程序员手动调用 lock 和 unlock 对 Mutex 进行上锁和解锁操作,因此这也是最简单安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,极大地简化了程序员编写与 Mutex 相关的异常处理代码。

        值得注意的是,lock_guard 对象并不负责管理 Mutex 对象的生命周期,lock_guard 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,即在某个 lock_guard 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 lock_guard 的生命周期结束之后,它所管理的锁对象会被解锁。

// lock_guard example
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::lock_guard
#include <stdexcept> // std::logic_error

std::mutex mtx;

void print_even (int x) {
if (x%2==0) std::cout << x << " is even\n";
else throw (std::logic_error("not even"));
}

void print_thread_id (int id) {
try {
// using a local lock_guard to lock mtx guarantees unlocking on destruction / exception:
std::lock_guard<std::mutex> lck (mtx);
print_even(id);
}
catch (std::logic_error&) {
std::cout << "[exception caught]\n";
}
}

int main ()
{
std::thread threads[10];
// spawn 10 threads:
for (int i=0; i<10; ++i)
threads[i] = std::thread(print_thread_id,i+1);

for (auto& th : threads) th.join();

return 0;
}

std::lock_guard 构造函数

locking (1)

explicit lock_guard (mutex_type& m);

adopting (2)

lock_guard (mutex_type& m, adopt_lock_t tag);

copy [deleted](3)

lock_guard (const lock_guard&) = delete;



    1、locking 初始化
                lock_guard 对象管理 Mutex 对象 m,并在构造时对 m 进行上锁(调用 m.lock())。
     2、adopting初始化
                lock_guard 对象管理 Mutex 对象 m,与 locking 初始化(1) 不同的是, Mutex 对象 m 已被当前线程锁住。
     3、贝构造
                lock_guard 对象的拷贝构造和移动构造(move construction)均被禁用,因此 lock_guard 对象不可被拷贝构造或移动构造。

#include <iostream>       // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::lock_guard, std::adopt_lock

std::mutex mtx; // mutex for critical section

void print_thread_id(int id) {
mtx.lock();
std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);
std::cout << "thread #" << id << '\n';
}

int main()
{
std::thread threads[10];
// spawn 10 threads:
for (int i = 0; i<10; ++i)
threads[i] = std::thread(print_thread_id, i + 1);

for (auto& th : threads) th.join();

return 0;
}

mtx.lock();),然后用 mtx 对象构造一个 lock_guard 对象(std::lock_guard<std::mutex> lck(mtx, std::adopt_lock);),注意此时 Tag 参数为 std::adopt_lock,表明当前线程已经获得了锁,此后 mtx 对象的解锁操作交由 lock_guard 对象 lck 来管理,在 lck 的生命周期结束之后,mtx 对象会自动解锁。

lock_guard 最大的特点就是安全易于使用,请看下面例子(​​参考​​),在异常抛出的时候通过 lock_guard 对象管理的 Mutex 可以得到正确地解锁。

#include <iostream>       // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::lock_guard
#include <stdexcept> // std::logic_error

std::mutex mtx;

void print_even(int x) {
if (x % 2 == 0) std::cout << x << " is even\n";
else throw (std::logic_error("not even"));
}

void print_thread_id(int id) {
try {
// using a local lock_guard to lock mtx guarantees unlocking on destruction / exception:
std::lock_guard<std::mutex> lck(mtx);
print_even(id);
}
catch (std::logic_error&) {
std::cout << "[exception caught]\n";
}
}

int main()
{
std::thread threads[10];
// spawn 10 threads:
for (int i = 0; i<10; ++i)
threads[i] = std::thread(print_thread_id, i + 1);

for (auto& th : threads) th.join();

return 0;
}


   (2)std::unique_lock 介绍

        但是 lock_guard 最大的缺点也是简单,没有给程序员提供足够的灵活度,因此,C++11 标准中定义了另外一个与 Mutex RAII 相关类 unique_lock,该类与 lock_guard 类相似,也很方便线程对互斥量上锁,但它提供了更好的上锁和解锁控制。

        顾名思义,unique_lock 对象以独占所有权的方式( unique owership)管理 mutex 对象的上锁和解锁操作,所谓独占所有权,就是没有其他的 unique_lock 对象同时拥有某个 mutex 对象的所有权。

         在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的 unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。

          std::unique_lock 对象也能保证在其自身析构时它所管理的 Mutex 对象能够被正确地解锁(即使没有显式地调用 unlock 函数)。因此,和 lock_guard 一样,这也是一种简单而又安全的上锁和解锁方式,尤其是在程序抛出异常后先前已被上锁的 Mutex 对象可以正确进行解锁操作,极大地简化了程序员编写与 Mutex 相关的异常处理代码。

            值得注意的是,unique_lock 对象同样也不负责管理 Mutex 对象的生命周期,unique_lock 对象只是简化了 Mutex 对象的上锁和解锁操作,方便线程对互斥量上锁,即在某个 unique_lock 对象的声明周期内,它所管理的锁对象会一直保持上锁状态;而 unique_lock 的生命周期结束之后,它所管理的锁对象会被解锁,这一点和 lock_guard 类似,但 unique_lock 给程序员提供了更多的自由,我会在下面的内容中给大家介绍 unique_lock 的用法。

             另外,与 lock_guard 一样,模板参数 Mutex 代表互斥量类型,例如 std::mutex 类型,它应该是一个基本的 BasicLockable 类型,标准库中定义几种基本的 BasicLockable 类型,分别 std::mutex, std::recursive_mutex, std::timed_mutex,std::recursive_timed_mutex (以上四种类型均已在上一篇博客中介绍)以及 std::unique_lock(本文后续会介绍 std::unique_lock)。(注:BasicLockable 类型的对象只需满足两种操作,lock 和 unlock,另外还有 Lockable 类型,在 BasicLockable 类型的基础上新增了 try_lock 操作,因此一个满足 Lockable 的对象应支持三种操作:lock,unlock 和 try_lock;最后还有一种 TimedLockable 对象,在 Lockable 类型的基础上又新增了 try_lock_for 和 try_lock_until 两种操作,因此一个满足 TimedLockable 的对象应支持五种操作:lock, unlock, try_lock, try_lock_for, try_lock_until)。


    std::unique_lock 构造函数

std::unique_lock 的构造函数的数目相对来说比 std::lock_guard 多,其中一方面也是因为 std::unique_lock 更加灵活,从而在构造 std::unique_lock 对象时可以接受额外的参数。总地来说,std::unique_lock 构造函数如下:

default (1)

unique_lock() noexcept;

locking (2)

explicit unique_lock(mutex_type& m);

try-locking (3)

unique_lock(mutex_type& m, try_to_lock_t tag);

deferred (4)

unique_lock(mutex_type& m, defer_lock_t tag) noexcept;

adopting (5)

unique_lock(mutex_type& m, adopt_lock_t tag);

locking for (6)

template <class Rep, class Period>unique_lock(mutex_type& m, const chrono::duration<Rep,Period>& rel_time);

locking until (7)

template <class Clock, class Duration>unique_lock(mutex_type& m, const chrono::time_point<Clock,Duration>& abs_time);

copy [deleted] (8)

unique_lock(const unique_lock&) = delete;

move (9)

unique_lock(unique_lock&& x);

下面我们来分别介绍以上各个构造函数:


新创建的 unique_lock 对象不管理任何 Mutex 对象。

(2) locking 初始化 新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.lock() 对 Mutex 对象进行上锁,如果此时另外某个 unique_lock 对象已经管理了该 Mutex 对象 m,则当前线程将会被阻塞。 (3) try-locking 初始化 新创建的 unique_lock 对象管理 Mutex 对象 m,并尝试调用 m.try_lock() 对 Mutex 对象进行上锁,但如果上锁不成功,并不会阻塞当前线程。 (4) deferred 初始化 m (5) adopting 初始化 m (6) locking 一段时间(duration) 新创建的 unique_lock 对象管理 Mutex 对象 m,并试图通过调用 m.try_lock_for(rel_time) 来锁住 Mutex 对象一段时间(rel_time)。 (7) locking 直到某个时间点(time point) 新创建的 unique_lock 对象管理 Mutex 对象m,并试图通过调用 m.try_lock_until(abs_time) 来在某个时间点(abs_time)之前锁住 Mutex 对象。 (8) 拷贝构造 [被禁用] unique_lock (9) 移动(move)构造 x

综上所述,由 (2) 和 (5) 创建的 unique_lock 对象通常拥有 Mutex 对象的锁。而通过 (1) 和 (4) 创建的则不会拥有锁。通过 (3),(6) 和 (7) 创建的 unique_lock 对象,则在 lock 成功时获得锁。

关于unique_lock 的构造函数,请看下面例子(​​参考​​):

#include <iostream>       // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::lock, std::unique_lock
// std::adopt_lock, std::defer_lock
std::mutex foo, bar;

void task_a() {
std::lock(foo, bar); // simultaneous lock (prevents deadlock)
std::unique_lock<std::mutex> lck1(foo, std::adopt_lock);
std::unique_lock<std::mutex> lck2(bar, std::adopt_lock);
std::cout << "task a\n";
// (unlocked automatically on destruction of lck1 and lck2)
}

void task_b() {
// foo.lock(); bar.lock(); // replaced by:
std::unique_lock<std::mutex> lck1, lck2;
lck1 = std::unique_lock<std::mutex>(bar, std::defer_lock);
lck2 = std::unique_lock<std::mutex>(foo, std::defer_lock);
std::lock(lck1, lck2); // simultaneous lock (prevents deadlock)
std::cout << "task b\n";
// (unlocked automatically on destruction of lck1 and lck2)
}


int main()
{
std::thread th1(task_a);
std::thread th2(task_b);

th1.join();
th2.join();

return 0;
}