现在看这题已经是时代的眼泪了啊。。。

首先分别从大到小和从小到大建立两棵重构树,每次在重构树上倍增,它的子树里的点就分别是从起点走 \(L\)\(n\) 中的点能到的点和从终点走 \(1\)\(R\) 中的点能到的点。我们可以轻松地用dfs序把它们弄到两个序列的区间上面。

问题就转化成了每次给两个排列上的两个区间判断是否有相同的数,这是个二维数点问题,直接主席树解决了。

#include <iostream>
#include <cstdio>
#include <algorithm> 
#include <cstring>

using namespace std;

int n, m, q;

const int N = 200005;

inline int min_(int a, int b) {
	return a < b ? a : b;
}

inline int max_(int a, int b) {
	return a > b ? a : b;
}

class Tree {
	int en;
	
	struct edge {
		int head, to, nxt;
	} ed[N << 1];
	
	inline void add_edge(int from, int to) {
		ed[++en].to = to; ed[en].nxt = ed[from].head; ed[from].head = en;
	}
	
public :
	int fa[N << 1][20], root, dfn[N], tim, arr[N], L[N << 1], R[N << 1], val[N << 1];
	Tree() { tim = 0; en = 0; }
	
	inline void addedge(int u, int v) {
		add_edge(u, v);
	}
	
	inline void dfs(int now, int f) {
		fa[now][0] = f; L[now] = 0x3f3f3f3f; R[now] = -1;
		if (now <= n) {
			arr[dfn[now] = ++tim] = now;
			L[now] = R[now] = tim;
		}
		for (int i = 1; i < 20; ++i) fa[now][i] = fa[fa[now][i - 1]][i - 1];
		for (int i = ed[now].head; i; i = ed[i].nxt) {
			dfs(ed[i].to, now); L[now] = min_(L[now], L[ed[i].to]);
			R[now] = max_(R[now], R[ed[i].to]);
		}
	}
};

Tree t1, t2;

struct edge {
	int from, to, val;
} ed[N << 1];

inline bool cmp2(edge a, edge b) {
	return a.val > b.val;
}

inline bool cmp1(edge a, edge b) {
	return a.val < b.val;
}

int f[N << 1];

inline int find(int x) {
	return f[x] == x ? x : f[x] = find(f[x]);
}

inline void kruskal1() {
	for (int i = 1; i <= n << 1; ++i) f[i] = i;
	for (int i = 1; i <= n; ++i) t1.val[i] = i;
	for (int i = 1; i <= m; ++i) ed[i].val = min_(ed[i].from, ed[i].to);
	t1.root = n;
	sort(ed + 1, ed + m + 1, cmp2);
	for (int i = 1; i <= m; ++i) {
		int fu = find(ed[i].from), fv = find(ed[i].to);
		if (fu == fv) continue;
		t1.addedge(++t1.root, fu); t1.addedge(t1.root, fv);
		t1.val[t1.root] = ed[i].val;
		f[fu] = f[fv] = t1.root;
	}
}

inline void kruskal2() {
	for (int i = 1; i <= n << 1; ++i) f[i] = i;
	for (int i = 1; i <= n; ++i) t2.val[i] = i;
	for (int i = 1; i <= m; ++i) ed[i].val = max_(ed[i].from, ed[i].to);
	t2.root = n;
	sort(ed + 1, ed + m + 1, cmp1);
	for (int i = 1; i <= m; ++i) {
		int fu = find(ed[i].from), fv = find(ed[i].to);
		if (fu == fv) continue;
		t2.addedge(++t2.root, fu); t2.addedge(t2.root, fv);
		t2.val[t2.root] = ed[i].val;
		f[fu] = f[fv] = t2.root;
	}
}


struct node {
	int sum;
	node *right = NULL;
	node *left = NULL;
} mem[N * 20];

node *root[N];

int top = 0;

inline node* newNode(node *t) {
	node *rt = &mem[++top]; rt -> sum = t -> sum; return rt; 
}

inline void build(node *now, int l, int r) {
	now -> sum = 0;
	if (l >= r) return ;
	now -> left = &mem[++top]; build(now -> left, l, l + r >> 1);
	now -> right = &mem[++top]; build(now -> right, (l + r >> 1) + 1, r);
}

inline node* insert(node *now, node *rt, int l, int r, int k) {
	rt = newNode(now); rt -> sum++;
	if (l < r) {
		int mid = l + r >> 1;
		if (k <= mid) {
			rt -> left = insert(now -> left, rt -> left, l, mid, k);
			rt -> right = now -> right;
		} else {
			rt -> right = insert(now -> right, rt -> right, mid + 1, r, k);
			rt -> left = now -> left; 
		}
	} return rt;
}

inline int query(node *now, int l, int r, int ql, int qr) {
	if (now -> sum == 0) return 0;
	if (ql <= l && r <= qr) return now -> sum;
	int mid = l + r >> 1, ret = 0;
	if (now -> left != NULL && ql <= mid) ret = query(now -> left, l, mid, ql, qr);
	if (now -> right != NULL && qr > mid) ret += query(now -> right, mid + 1, r, ql, qr);
	return ret;
}

inline int read() {
	register int s = 0;
	register char ch = getchar();
	while (!isdigit(ch)) ch = getchar();
	while (isdigit(ch)) s = (s << 1) + (s << 3) + (ch & 15), ch = getchar();
	return s;
}

int main() {
	n = read(); m = read(); q = read();
	for (int i = 1; i <= m; ++i) {
		ed[i].from = read() + 1; ed[i].to = read() + 1;
	} kruskal1(); kruskal2(); t1.dfs(t1.root, 0); t2.dfs(t2.root, 0);
	root[0] = &mem[++top]; build(root[0], 1, n);
	for (int i = 1; i <= n; ++i) {
		root[i] = insert(root[i - 1], root[i], 1, n, t2.dfn[t1.arr[i]]);
	} int l, r, u, v;
	while (q--) {
		u = read() + 1; v = read() + 1; l = read() + 1; r = read() + 1;
		int x = u, y = v;
		for (int i = 19; ~i; --i) {
			if (t1.val[t1.fa[x][i]] >= l && t1.fa[x][i] != 0) x = t1.fa[x][i];
		}
		for (int i = 19; ~i; --i)
			if (t2.val[t2.fa[y][i]] <= r && t2.fa[y][i] != 0) y = t2.fa[y][i];
		puts(query(root[t1.R[x]], 1, n, t2.L[y], t2.R[y]) > query(root[t1.L[x] - 1], 1, n, t2.L[y], t2.R[y]) ? "1" : "0");
	} return 0;
}