Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 38575 | Accepted: 12424 |
Description
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
Output
Sample Input
2 0 0 3 4 3 17 4 19 4 18 5 0
Sample Output
Scenario #1 Frog Distance = 5.000 Scenario #2 Frog Distance = 1.414
Source
/* 给出你n个点的坐标(二维平面中的),让你求这样一个值:从点1到点2有很多路径,中间可以从很多块石头跳过去,现在就让你找一条路径,从点1 到点2,中间每跳一步中的最大距离d,是所有路径中最小的。 跟Kruskal算法差不多,先按照边的长短来排序,然后每次增加一条边,判断是不是连通,如果连通就是找到的最短路; */ #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #include <string> #include <algorithm> #define N 205 using namespace std; struct node { int x,y; double d;//两个点之间的距离 bool operator <(const node &b) const { return d<b.d; }//按照边的长短排序 }; node fr[N*N]; int bin[N]; int nod[N]; int m=0; int n; int findx(int x) { int child=x; while(x!=bin[x]) x=bin[x]; while(child!=x) { int t=bin[child]; bin[child]=x; child=t; } return x; } void built(int x,int y) { int fx=findx(x); int fy=findx(y); if(fx!=fy) bin[fx]=fy; } double dis(int x1,int y1,int x2,int y2) { return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } void init() { for(int i=1;i<=n;i++) bin[i]=i; } int main() { freopen("C:\\Users\\acer\\Desktop\\in.txt","r",stdin); int Case=0; while(scanf("%d",&n)!=EOF&&n) { if(Case) printf("\n"); printf("Scenario #%d\n",++Case); m=0; int x[N],y[N]; for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]); for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) { fr[m].x=i; fr[m].y=j; fr[m++].d=dis(x[i],y[i],x[j],y[j]); } } sort(fr,fr+m); for(int i=0;i<m;i++) { int flag=0; init(); double answer=fr[i].d; for(int j=i;j<m;j++) { answer=fr[j].d; built(fr[j].x,fr[j].y); if(findx(1)==findx(2)) { printf("Frog Distance = %.3f\n",answer); flag=1; break; } } if(flag) break; } } return 0; }