自适应辛普森公式模板。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<cmath> #include<map> #include<set> #define LL long long #define CLR(a, b) memset(a, b, sizeof(a)) using namespace std; double a; double F(double x)///需要积分的式子。 { return sqrt(1 + 4 * a * a * x * x); } double simpson(double a, double b)///模板 { double c = a + (b - a) / 2; return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6; } double asr(double a, double b, double eps, double A)///模板 { double c = a + (b - a) / 2; double L = simpson(a, c), R = simpson(c, b); if(fabs(L+R-A) < 15*eps) return L+R+(L+R-A) / 15.0; return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R); } double asr(double a, double b, double eps)///模板 { return asr(a, b, eps, simpson(a, b)); } double parabola_arc_length(double w, double h) { a = 4.0 * h / (w * w); return asr(0, w / 2, 1e-5) * 2; } int main() { int t, cas = 1; scanf("%d", &t); while(t --) { int D, H, B, L; scanf("%d%d%d%d", &D, &H, &B, &L); int n = (B+D-1)/D; double D1 = (double)B / n; double L1 = (double)L / n; double x = 0, y = H; while(y - x > 1e-5) { double m = x + (y - x) / 2; if(parabola_arc_length(D1, m) < L1) x = m; else y = m; } if(cas > 1) puts(""); printf("Case %d:\n%.2lf\n", cas ++, H - x); } return 0; }