题目大意:

\(n\) 块木板从左到右排成一行,有 \(m\) 个工匠对这些木板进行粉刷,每块木板至多被粉刷一次。

\(i\) 个木匠要么不粉刷,要么粉刷包含木板 \(S_i\) 且长度不超过 \(L_i\) 的连续的一段木板,每粉刷一块可以得到 \(P_i\) 的报酬。不同工匠的 \(S_i\) 不同。 请问如何安排能使工匠们获得的总报酬最多。

思路:

\(f_{i,j}\) 表示前 \(i\) 个人涂完前 \(j\) 段木板的最大报酬。则有:

\[f_{i,j}=\max(f_{i-1,j},f_{i,j-1},\max_{j-L_i\leq k \leq S_i-1}\{f_{i-1,k} + (j-k)P_i\}) \]

单调队列优化即可。

代码:
const int N = 16010, M = 110;

inline ll Read()
{
	ll x = 0, f = 1;
	char c = getchar();
	while (c != '-' && (c < '0' || c > '9')) c = getchar();
	if (c == '-') f = -f, c = getchar();
	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
	return x * f;
}

int n, m;
int f[M][N];
struct node
{
	int L, P, S;
	bool operator < (const node &a) const
	{
		return S < a.S;
	}
}a[M];

int q[N];

int main()
{
//	freopen(".in", "r", stdin);
//	freopen(".out", "w", stdout);
	n = Read(), m = Read();
	for (int i = 1; i <= m; i++)	
		a[i].L = Read(), a[i].P = Read(), a[i].S = Read();
	sort (a + 1, a + 1 + m); 
	for (int i = 1; i <= m; i++)
	{
		int h = 1, t = 0;
		for (int j = max(0, a[i].S - a[i].L); j <= a[i].S - 1; j++)
		{
			while (h <= t && f[i-1][q[t]] - q[t] * a[i].P <= f[i - 1][j] - j * a[i].P) t--;
			q[++t] = j;	
		}
		for (int j = 1; j <= n; j++)
		{
			f[i][j] = max(f[i - 1][j], f[i][j - 1]);
			if (j >= a[i].S)
			{
				while (h <= t && q[h] < j - a[i].L) h++;
				if (h <= t) f[i][j] = max(f[i][j], j * a[i].P + f[i-1][q[h]] - q[h] * a[i].P);
			}
		}
	}
	printf ("%d\n", f[m][n]);
	return 0;
}