背包问题(三种动态规划) 代码(C)
能够用动态规划(Dynamic Programming, DP)求解, 能够通过记忆化搜索推导出递推式, 能够使用三种不同的方向进行求解.
动态规划主要是状态转移, 须要理解清晰.
代码:
/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/
/*eclipse cdt, gcc 4.8.1*/
#include <stdio.h>
#include <memory.h>
#include <limits.h>
#include <utility>
#include <queue>
#include <algorithm>
using namespace std;
class Program {
static const int MAX_N = 100;
int n=4, W=5;
int w[MAX_N] = {2,1,3,2}, v[MAX_N]={3,2,4,2};
int dp[MAX_N+1][MAX_N+1]; //默认初始化为0
public:
void solve() {
for (int i=n-1; i>=0; i--) {
for (int j=0; j<=W; ++j) {
if (j<w[i]) {
dp[i][j] = dp[i+1][j];
} else {
dp[i][j] = max(dp[i+1][j], dp[i+1][j-w[i]] + v[i]);
}
}
}
printf("result = %d\n", dp[0][W]);
}
void solve1() {
for (int i=0; i<n; ++i) {
for (int j=0; j<=W; ++j) {
if (j<w[i]) {
dp[i+1][j] = dp[i][j];
} else {
dp[i+1][j] = max(dp[i][j], dp[i][j-w[i]]+v[i]);
}
}
}
printf("result = %d\n", dp[n][W]);
}
void solve2() {
for (int i=0; i<n; i++) {
for (int j=0; j<=W; ++j) {
dp[i+1][j] = max(dp[i+1][j], dp[i][j]);
if (j+w[i]<=W) {
dp[i+1][j+w[i]] = max(dp[i+1][j+w[i]], dp[i][j]+v[i]);
}
}
}
printf("result = %d\n", dp[n][W]);
}
};
int main(void)
{
Program P;
P.solve2();
return 0;
}
输出:
result = 7
节省空间, 能够使用1维数组的动态规划.
代码:
/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/
/*eclipse cdt, gcc 4.8.1*/
#include <stdio.h>
#include <memory.h>
#include <limits.h>
#include <utility>
#include <queue>
#include <algorithm>
using namespace std;
class Program {
static const int MAX_N = 100;
int n=4, W=5;
int w[MAX_N] = {2,1,3,2}, v[MAX_N]={3,2,4,2};
int dp[MAX_N+1];
public:
void solve() {
memset(dp, 0, sizeof(dp));
for (int i=0; i<n; ++i) {
for (int j=W; j>=w[i]; --j) {
dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
}
}
printf("result = %d\n", dp[W]);
}
};
int main(void)
{
Program P;
P.solve();
return 0;
}
输出:
result = 7