数组系列,我之前列出了五道必会的题目。
接下来我将会挨个讲一讲。
先来看第一道是 leetcode 35.搜索插入位置。
题目地址https://leetcode-cn.com/problems/search-insert-position/
题意给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
你可以假设数组中无重复元素。
示例输入: [1,3,5,6], 5
输出: 2
输入: [1,3,5,6], 2
输出: 1
思路这道题目其实是一道很简单的题,但是为什么通过率相对来说并不高呢,我理解是大家对 边界处理的判断有所失误,导致的。
这道题目,我们要在数组中插入目标值,无非是这四种情况
- 目标值在数组所有元素之前
- 目标值等于数组中某一个元素
- 目标值插入数组中的位置
- 目标值在数组所有元素之后
这四种情况确认清楚了,我们就可以尝试解题了
暴力解题 不一定时间消耗就非常高,关键看实现的方式,就像是二分查找时间消耗不一定就很低,是一样的。
这里我给出了一种简洁的暴力解法,和两种二分查找的解法。
解法:暴力枚举class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
for (int i = 0; i < nums.size(); i++) {
// 分别处理如下三种情况
// 目标值在数组所有元素之前
// 目标值等于数组中某一个元素
// 目标值插入数组中的位置
if (nums[i] >= target) { // 一旦发现大于或者等于target的num[i],那么i就是我们要的结果
return i;
}
}
// 目标值在数组所有元素之后的情况
return nums.size(); // 如果target是最大的,或者 nums为空,则返回nums的长度
}
};
效率如下:
时间复杂度:O(n) 时间复杂度:O(1)
二分法既然暴力解法的时间复杂度是On,我们就要尝试一下使用二分查找法。
大家注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件
以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。
同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下表可能不是唯一的。
大体讲解一下二分法的思路,这里来举一个例子,例如在这个数组中,我们使用二分法寻找元素为5的位置,并返回其下标
二分查找涉及的很多的边界条件,逻辑比较简单,就是写不好
相信很多同学对二分查找法中边界条件处理不好,例如 到底是 小于 还是 小于等于, 到底是+1 呢,还是要-1呢
这是为什么呢,主要是我们对区间的定义没有想清楚,这就是我们的不变量
我们要在二分查找的过程中,保持不变量,这也就是循环不变量(感兴趣的同学可以查一查)
二分法第一种写法
以这道题目来举例,以下的代码中我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right]
这就决定了我们 这个二分法的代码如何去写,大家看如下代码。
建议大家横屏来看代码
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n - 1; // 我们定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle;
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0, -1]
// 目标值等于数组中某一个元素 return middle;
// 目标值插入数组中的位置 [left, right],return right + 1
// 目标值在数组所有元素之后的情况 [left, right], return right + 1
return right + 1;
}
};
时间复杂度:O(logn) 时间复杂度:O(1)
效率如下:
二分法第二种写法
如果说我们定义 target 是在一个在左闭右开的区间里,也就是[left, right)
那么二分法的边界处理方式则截然不同。
不变量是[left, right)的区间,如下代码可以看出是如何在循环中坚持不变量的。
建议大家横屏来看代码
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n; // 我们定义target在左闭右开的区间里,[left, right) target
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在 [middle+1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值的情况,直接返回下标
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0,0)
// 目标值等于数组中某一个元素 return middle
// 目标值插入数组中的位置 [left, right) ,return right 即可
// 目标值在数组所有元素之后的情况 [left, right),return right 即可
return right;
}
};
时间复杂度:O(logn) 时间复杂度:O(1)
总结
希望通过这道题目 ,可以帮助大家对数组以及二分法有更深的理解