Yuta has n numbers A[1]~A[n] and a number K. For any none empty subset S of the numbers, the value of S is equal to the sum of the largest min(|S|,k) numbers in S. The value of the array A is equal to the sum of the value of all none empty subset of the numbers.
Now Yuta shows the n numbers, And he wants to know the value of the array for each K in [1,n].
It is too difficult for Rikka. Can you help her?
InputThe first line contains a number t(1<=t<=10), the number of the testcases.
For each testcase, the first line contains a number n(1<=n<=100000), the number of numbers Yuta has. The second line contains n number A[1]~A[n](0<=A[i]<=10^9).OutputFor each testcase, print a line contains exactly n numbers, the ith number is the value of the array when K=i. The answer may be very large, so you only need to print the answer module 998244353.
Sample Input
2 3 1 1 1 5 1 2 3 4 5
Sample Output
7 11 12 129 201 231 239 240
题意:给定一个数组,F(k)表示所有集合s的前min(K,s)大之和。求所有F(k)。
思路:先得到方程f(x),然后一般来说一个组合数*一个指数,可以直接转化一下用NTT加速;或者用第二类斯特林转化,再套NTT或FFT卷积。
关键在于找到某两个系数之和为定值,然后分别以其为“基”构造函数,然后取卷积这两个函数。
#include<bits/stdc++.h> #define rep(i,x,y) for(int i=x;i<=y;i++) using namespace std; #define ll long long #define MOD Mod const int G=3; const int maxn=268576; const int Mod=998244353; int qpow(int v,int p) { int ans=1; for(;p;p>>=1,v=1ll*v*v%Mod) if(p&1)ans=1ll*ans*v%Mod; return ans; } void rader(int y[], int len) { for(int i=1,j=len/2;i<len-1;i++) { if(i<j) swap(y[i],y[j]); int k=len/2; while(j>=k) j-=k,k/=2; if(j<k) j+=k; } } void NTT(int y[],int len,int opt) { rader(y,len); for(int h=2;h<=len;h<<=1) { int wn=qpow(G,(MOD-1)/h); if(opt==-1) wn=qpow(wn,Mod-2); for(int j=0;j<len;j+=h) { int w=1; for(int k=j;k<j+h/2;k++) { int u=y[k]; int t=(ll)w*y[k+h/2]%MOD; y[k]=(u+t)%MOD; y[k+h/2]=(u-t+MOD)%MOD; w=(ll)w*wn%MOD; } } } if(opt==-1) { int t=qpow(len,MOD-2); for(int i=0;i<len;i++) y[i]=(ll)y[i]*t%MOD; } } int inv[maxn],A[maxn],B[maxn],a[maxn],f[maxn],p2[maxn]; int main() { int T,N; f[0]=inv[0]=p2[0]=1; rep(i,1,100000) p2[i]=(ll)p2[i-1]*2%Mod; rep(i,1,100000) f[i]=(ll)f[i-1]*i%Mod; inv[100000]=qpow(f[100000],Mod-2); for(int i=100000-1;i>=0;i--) inv[i]=(ll)inv[i+1]*(i+1)%Mod; scanf("%d",&T); while(T--){ scanf("%d",&N); int len=1; while(len<=N*2) len<<=1; rep(i,0,len) A[i]=B[i]=0; rep(i,1,N) scanf("%d",&a[i]); sort(a+1,a+N+1); reverse(a+1,a+N+1); rep(i,0,N-1){ A[i]=inv[i]; B[i]=(ll)f[N-i-1]*p2[i]%Mod*a[N-i]%Mod; } NTT(A,len,1); NTT(B,len,1); rep(i,0,len-1) A[i]=(ll)A[i]*B[i]%Mod; //乘完,不能只乘到N NTT(A,len,-1); int ans=0; rep(i,1,N){ (ans+=(ll)inv[i-1]*A[N-i]%Mod)%=Mod; printf("%d ",ans); } puts(""); } return 0; }