题目链接:hdu 4454 Stealing a Cake
题目大意:给定一个起始点s,一个圆形。一个矩形。如今从起点開始,移动到圆形再移动到矩形。求最短距离。
解题思路:在圆周上三分就可以。即对角度[0,2*pi]三分。计算点和矩形的距离能够选点和矩形四条边的距离最短值。
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const double eps = 1e-9; const double pi = 4 * atan(1.0); struct point { double x, y; point(double x = 0, double y = 0) { this->x = x; this->y = y; } }s, o, p[4]; double R; inline double distant(point u, point v) { double x = u.x - v.x; double y = u.y - v.y; return sqrt(x*x + y*y); } inline double handle(point u, point l, point r) { if (fabs(l.x - r.x) < eps) { double a = min(l.y, r.y), b = max(l.y, r.y); if (a <= u.y && u.y <= b) return fabs(u.x - l.x); else return min(distant(u, l), distant(u, r)); } else { double a = min(l.x, r.x), b = max(l.x, r.x); if (a <= u.x && u.x <= b) return fabs(u.y - l.y); else return min(distant(u, l), distant(u, r)); } } inline double f(double k) { point u(o.x + R * cos(k), o.y + R * sin(k)); double ret = handle(u, p[0], p[3]); for (int i = 0; i < 3; i++) ret = min(ret, handle(u, p[i], p[i+1])); return distant(s, u) + ret; } double solve (double l, double r) { for (int i = 0; i < 100; i++) { double x1 = l + (r-l) / 3; double x2 = r - (r-l) / 3; if (f(x1) < f(x2)) r = x2; else l = x1; } return f(l); } void init () { double a, b, c, d; scanf("%lf%lf%lf", &o.x, &o.y, &R); scanf("%lf%lf%lf%lf", &a, &b, &c, &d); p[0].x = min(a, c); p[0].y = min(b, d); p[1].x = min(a, c); p[1].y = max(b, d); p[2].x = max(a, c); p[2].y = max(b, d); p[3].x = max(a, c); p[3].y = min(b, d); /* for (int i = 0; i < 4; i++) printf("%lf %lf\n", p[i].x, p[i].y); */ } int main () { while (scanf("%lf%lf", &s.x, &s.y) == 2 && (fabs(s.x) > eps || fabs(s.y) > eps)) { init(); printf("%.2lf\n", solve(0, 2 * pi)); } return 0; }
版权声明:本文博主原创文章。博客,未经同意不得转载。