http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=127
描述
公元3000年,子虚帝国统领着N个星系,原先它们是靠近光束飞船来进行旅行的,近来,X博士发明了星际之门,它利用虫洞技术,一条虫洞可以连通任意的两个星系,使人们不必再待待便可立刻到达目的地。
帝国皇帝认为这种发明很给力,决定用星际之门把自己统治的各个星系连结在一起。
可以证明,修建N-1条虫洞就可以把这N个星系连结起来。
现在,问题来了,皇帝想知道有多少种修建方案可以把这N个星系用N-1条虫洞连结起来?
输入
第一行输入一个整数T,表示测试数据的组数(T<=100)
每组测试数据只有一行,该行只有一个整数N,表示有N个星系。(2<=N<=1000000)
输出
对于每组测试数据输出一个整数,表示满足题意的修建的方案的个数。输出结果可能很大,请输出修建方案数对10003取余之后的结果。
样例输入
2 3 4
样例输出
3 16
应用
组合数学中的应用
定理的另一种表述
过n个有标志顶点的树的数目等于n^(n-2)。 [3]
定理的理解
此定理说明用n-1条边将n个一致的顶点连接起来的连通图的个数为n^(n-2),也可以这样理解,将n个城市连接起来的树状公路网络有n^(n-2)种方案。所谓树状,指的是用n-1条边将n个顶点构成一个连通图。当然,建造一个树状的公路网络将n个城市连接起来,应求其中长度最短、造价最省的一种,或效益最大的一种。Cayley定理只是说明可能方案的数目。
#include<stdio.h>
int main()
{
int n,i,t,sum;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
sum=1;
for(i=0;i<n-2;i++)
sum=(sum*n)%10003;
printf("%d\n",sum);
}
return 0;
}