On September 1, the billboard was empty. One by one, the announcements started being put on the billboard.
Each announcement is a stripe of paper of unit height. More specifically, the i-th announcement is a rectangle of size 1 * wi.
When someone puts a new announcement on the billboard, she would always choose the topmost possible position for the announcement. Among all possible topmost positions she would always choose the leftmost one.
If there is no valid location for a new announcement, it is not put on the billboard (that's why some programming contests have no participants from this university).
Given the sizes of the billboard and the announcements, your task is to find the numbers of rows in which the announcements are placed.
Input
The first line of the input file contains three integer numbers, h, w, and n (1 <= h,w <= 10^9; 1 <= n <= 200,000) - the dimensions of the billboard and the number of announcements.
Each of the next n lines contains an integer number wi (1 <= wi <= 10^9) - the width of i-th announcement.
Output
Sample Input
3 5 5 2 4 3 3 3
Sample Output
1 2 1 3 -1
解题:线段树线段树线段树。。。。。。。。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <vector> 6 #include <climits> 7 #include <algorithm> 8 #include <cmath> 9 #define LL long long 10 using namespace std; 11 const int maxn = 200010; 12 struct node { 13 int lt,rt,lmax,rmax; 14 } tree[maxn<<2]; 15 int h,w,n,ans; 16 void build(int lt,int rt,int v) { 17 tree[v].lt = lt; 18 tree[v].rt = rt; 19 if(lt == rt) { 20 tree[v].lmax = tree[v].rmax = w; 21 return; 22 } 23 int mid = (lt+rt)>>1; 24 build(lt,mid,v<<1); 25 build(mid+1,rt,v<<1|1); 26 tree[v].lmax = max(tree[v<<1].lmax,tree[v<<1].rmax); 27 tree[v].rmax = max(tree[v<<1|1].lmax,tree[v<<1|1].rmax); 28 } 29 void add(int val,int v) { 30 if(val > max(tree[v].lmax,tree[v].rmax)) { 31 ans = -1; 32 return; 33 } 34 if(tree[v].lt == tree[v].rt) { 35 if(tree[v].lmax >= val) { 36 ans = tree[v].lt; 37 tree[v].lmax -= val; 38 tree[v].rmax -= val; 39 } else ans = -1; 40 return; 41 } 42 if(val <= tree[v].lmax) add(val,v<<1); 43 else add(val,v<<1|1); 44 tree[v].lmax = max(tree[v<<1].lmax,tree[v<<1].rmax); 45 tree[v].rmax = max(tree[v<<1|1].lmax,tree[v<<1|1].rmax); 46 } 47 int main() { 48 int temp; 49 while(~scanf("%d %d %d",&h,&w,&n)) { 50 if(h > n) h = n; 51 build(1,h,1); 52 while(n--) { 53 scanf("%d",&temp); 54 ans = -1; 55 add(temp,1); 56 printf("%d\n",ans); 57 } 58 } 59 return 0; 60 }