当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制。为了体验这个关键的特性,你需要满足以下几个先决条件:
1、输入的数据来自可靠的数据源和可靠的接收器;
2、应用程序的metadata被application的driver持久化了(checkpointed );
3、启用了WAL特性(Write ahead log)。
下面我将简单地介绍这些先决条件。
可靠的数据源和可靠的接收器
元数据持久化(Metadata checkpointing)
1、配置;
2、代码;
3、那些在队列中还没有处理的batch(仅仅保存元数据,而不是这些batch中的数据)
可能存在数据丢失的场景
1、两个Exectuor已经从接收器中接收到输入数据,并将它缓存到Exectuor的内存中;
2、接收器通知输入源数据已经接收;
3、Exectuor根据应用程序的代码开始处理已经缓存的数据;
4、这时候Driver突然挂掉了;
5、从设计的角度看,一旦Driver挂掉之后,它维护的Exectuor也将全部被kill;
6、既然所有的Exectuor被kill了,所以缓存到它们内存中的数据也将被丢失。结果,这些已经通知数据源但是还没有处理的缓存数据就丢失了;
7、缓存的时候不可能恢复,因为它们是缓存在Exectuor的内存中,所以数据被丢失了。
这对于很多关键型的应用程序来说非常的糟糕。
WAL(Write ahead log)
启用了WAL机制,所以已经接收的数据被接收器写入到容错存储中,比如HDFS或者S3。由于采用了WAl机制,Driver可以从失败的点重新读取数据,即使Exectuor中内存的数据已经丢失了。在这个简单的方法下,Spark Streaming提供了一种即使是Driver挂掉也可以避免数据丢失的机制。
At-least-once语义
1、接收器接收到输入数据,并把它存储到WAL中;
2、接收器在更新Zookeeper中Kafka的偏移量之前突然挂掉了;
4、过了一会,接收器从失败中恢复;
5、那些被保存到WAL中但未被处理的数据被重新读取;
6、一旦从WAL中读取所有的数据之后,接收器开始从Kafka中消费数据。因为接收器是采用Kafka的High-Level Consumer API实现的,它开始从Zookeeper当前记录的偏移量开始读取数据,但是因为接收器挂掉的时候偏移量并没有更新到Zookeeper中,所有有一些数据被处理了2次。
WAL的缺点
1、WAL减少了接收器的吞吐量,因为接受到的数据必须保存到可靠的分布式文件系统中。
2、对于一些输入源来说,它会重复相同的数据。比如当从Kafka中读取数据,你需要在Kafka的brokers中保存一份数据,而且你还得在Spark Streaming中保存一份。
Kafka direct API
这个想法对于这个特性是非常明智的。Spark driver只需要简单地计算下一个batch需要处理Kafka中偏移量的范围,然后命令Spark Exectuor直接从Kafka相应Topic的分区中消费数据。换句话说,这种方法把Kafka当作成一个文件系统,然后像读文件一样来消费Topic中的数据。
1、不再需要Kafka接收器,Exectuor直接采用Simple Consumer API从Kafka中消费数据。
2、不再需要WAL机制,我们仍然可以从失败恢复之后从Kafka中重新消费数据;
3、exactly-once语义得以保存,我们不再从WAL中读取重复的数据。