要求:将数组中的数划分为两组,使得两个子数组的和的差值最小,数组中的数的取值范围为0<X<100,元素个数也是大于0小于100.如:a[]={2,4,5,6,7},得出的两组数:{2,4,6}和{5,7},abs(sum(a1)-sum(a1))=0;如:{2,5,6,10},abs(sum(2,10)-sum(5,6))=1所以:子数组为:{2,10}和{5,6}。

思路:很容易知道如果选取的某个子数组的和currentSum=sum/2,则这两个子数组的和的差值最小,即从数组中选取某些数字使得其和接近整个数组的1/2.,所以该命题本质上是一个01背包命题,原命题等价于从n各物品中选取若干个,其重量不超过sum/2,且重量达到最大

基于上述思路代码如下:
#include <iostream>
using namespace std;

const int M = 100;
int w[M];
int currentSum[M*M];
bool state[M][M];
int main()
{
  int n;
  while (scanf("%d ", &n) != EOF) {//输入数组元素个数
    int sum = 0;
    for (int i = 0; i < n; ++i) {
      scanf("%d", &w[i]);
      sum += w[i];//sum存储整个数组元素的和
    }
    memset(currentSum, 0, sizeof(currentSum));
    memset(state, 0, sizeof(state));
    for (int i = 0; i < n; ++i)
      for (int j = sum/2; j >= w[i]; --j) {
        if (currentSum[j] < currentSum[j-w[i]] + w[i]) {
          currentSum[j] =currentSum[j-w[i]] + w[i];
          state[i][j] = true;
        }
      }
    printf("%d\n", sum - currentSum[sum/2]*2);
    int i = n, j = sum/2;
    while (i--) {
      if (state[i][j]) {
        printf("%d ", w[i]);
        j -= w[i];
      }
    }
    printf("\n");
  }
  return 0;
}
程序运行结果如下:
将一个数组划分为和差值最小的子数组_数组元素