给「代码随想录」一个星标吧! ❝ 通知:我将公众号文章和学习相关的资料整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧!

❞ 如果对回溯法理论还不清楚的同学,可以先看这个视频:

第51题. N皇后 题目链接:https://leetcode-cn.com/problems/n-queens/

n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互***。

上图为 8 皇后问题的一种解法。 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。

每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例: 输入: 4 输出: [ [".Q..", // 解法 1 "...Q", "Q...", "..Q."],

["..Q.", // 解法 2 "Q...", "...Q", ".Q.."] ] 解释: 4 皇后问题存在两个不同的解法。

提示: 皇后,是国际象棋中的棋子,意味着国王的妻子。皇后只做一件事,那就是“吃子”。当她遇见可以吃的棋子时,就迅速冲上去吃掉棋子。当然,她横、竖、斜都可走一到七步,可进可退。(引用自 百度百科 - 皇后 )

思路 都知道n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二位矩阵还会有点不知所措。

首先来看一下皇后们的约束条件:

  1. 不能同行
  2. 不能同列
  3. 不能同斜线 确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面我用一个3 * 3 的棋牌,将搜索过程抽象为一颗树,如图:

51.N皇后 从图中,可以看出,二维矩阵中矩阵的高就是这颗树的高度,矩阵的宽就是树型结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这颗树,「只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了」。

回溯三部曲 按照我总结的如下回溯模板,我们来依次分析:


void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }
    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}
  • 递归函数参数 我依然是定义全局变量二维数组result来记录最终结果。

参数n是棋牌的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:


vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件 在如下树形结构中:

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:


if (row == n) {
    result.push_back(chessboard);
    return;
}
  • 单层搜索的逻辑 递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:


for (int col = 0; col < n; col++) {
    if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
        chessboard[row][col] = 'Q'; // 放置皇后
        backtracking(n, row + 1, chessboard);
        chessboard[row][col] = '.'; // 回溯,撤销皇后
    }
}

  • 验证棋牌是否合法 按照如下标准去重:
  1. 不能同行
  2. 不能同列
  • 不能同斜线 (45度和135度角) 代码如下:

bool isValid(int row, int col, vector<string>& chessboard, int n) {
    int count = 0;
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}

在这份代码中,细心的同学可以发现为什么没有在同行进行检查呢?

因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

那么按照这个模板不难写出如下代码:

C++代码



class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋牌的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    int count = 0;
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

可以看出,除了验证棋盘合法性的代码,省下来部分就是按照回溯法模板来的。

总结 本题是我们解决棋盘问题的第一道题目。

如果从来没有接触过N皇后问题的同学看着这样的题会感觉无从下手,可能知道要用回溯法,但也不知道该怎么去搜。

**「这里我明确给出了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了」**。

大家可以在仔细体会体会!

就酱,如果感觉「代码随想录」干货满满,就分享给身边的朋友同学吧,他们可能也需要!

打算从头开始打卡的录友,可以在「算法汇总」这里找到历史文章,很多录友都在从头打卡,你并不孤单!