前言:大部分多线程同步场景,在功能和性能层面,synchronized可以满足,少部分场景Lock可以满足,dubbo的源码也符合这个比例,需要使用到Condition的场景极少,整个dubbo源码中只在启动函数中,服务关闭这一处使用到了Lock+Condition机制。

1.Lock+Condition用法

生产者,消费者模式在面试coding中出场率很高,可以用synchronized+wait+ notify来实现,也可以使用Lock+Condition实现。直接上代码



public class LockConditionTest {
private LinkedList<String> queue=new LinkedList<String>();

private Lock lock = new ReentrantLock();

private int maxSize = 5;

private Condition providerCondition = lock.newCondition();

private Condition consumerCondition = lock.newCondition();

public void provide(String value){
try {
lock.lock();
while (queue.size() == maxSize) {
providerCondition.await();
}
queue.add(value);
consumerCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}

public String consume(){
String result = null;
try {
lock.lock();
while (queue.size() == 0) {
consumerCondition.await();
}
result = queue.poll();
providerCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
return result;
}

public static void main(String[] args) {
LockConditionTest t = new LockConditionTest();
new Thread(new Provider(t)).start();
new Thread(new Consumer(t)).start();

}

}


 

以两个问题驱动

1.队列满了,生产者线程怎么停下来的?队列从满又变为不满的时候,怎么重新激活。

2.队列空了,消费者线程如何停下来,又如何重新开始消费。

一步一步解答这两个问题

2.ReentrantLock

ReentrantLock初始化的时候,默认是初始化一个NonfairSync。




public ReentrantLock() {
sync = new NonfairSync();
}


  




 


Lock+Condition实现机制_类图


NonfairSync类图


核心代码在AbstractQueuedSynchronizer中,只看数据结构的话,这是一个基于Node,带头指针和尾指针的双向链表,每一个Node里面存一个线程,以及该线程的等待状态




static final class Node {
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
}
private transient volatile Node head;
private transient volatile Node tail;
private volatile int state;


  


那么,ReentrantLock在lock和unlock的时候,操作的就是这个双向链表sync queue。

先看获取锁的过程




final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}


  


1.如果这个锁没有任何线程持有,那么当前线程直接可以获得。(这是非公平锁的设计,如果是公平锁,需要检查是否有线程在排队,如果有,当前线程不能直接抢占,也要加入排队。)

2.如果这个锁被占用了,占用线程是当前线程,那么state+1,这也是可重入锁之所以可以重入的由来。

3.都不满足,暂时获取锁失败,返回false

那么如果在3这一步获取锁失败,后续如何处理呢?




public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}


  


1.addWaiter:在等待队列sync queue中添加一个节点

2.acquireQueued:节点自旋获取锁或者进入阻塞

addWaiter比较简单,即把当前等待线程加入sync queue的尾节点。




private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}


  


acquireQueued具体做了什么呢?




final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}


  


1.自旋

2.如果当前就一个线程在等待,那么尝试获取锁。(判断条件:当前节点的前驱为head,即head.next = 当前节点)

3.不满足2,如果满足进入阻塞的条件,调用LockSupport.park(this)进入阻塞。

一句话总结lock的过程:当前线程直接去尝试获取锁,不成功,则加入sync queue尾节点进行阻塞等待(非公平)。

在看unlock的过程




public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}


  


1.先释放当前线程占有的锁,核心就是维护state的值。加一次锁,state+1,释放反之。

2.unparkSuccessor :之前提到,lock的时候,会维护一个排队的双向队列sync queue,此时,会unpark唤醒其中的head.next,使其进入锁竞争状态。

注:公平锁,非公平锁加锁的过程小有区别,一个是抢占式的,一个是排队式的,释放锁的过程则是完全相同的。

3.Condition

先看类图




 


Lock+Condition实现机制_ide_02


Condition


用过Object的wait,notify的对这些方法应该不陌生,对应这里的await和signal

先看await




public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}


  


1.构造一个Node,形成一个单向链表condition queue,存储用于await在某一个condition上的线程。

2.释放当前Node持有的锁。这个释放过程跟之前提到的unlock过程类似。

3.LockSupport.park进行阻塞,等待signal的唤醒。

4.如果被唤醒,继续加入锁的竞争中去。

在看signal




public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}


  


在某个condition进行await的时候,形成了一个单向链表condition queue。

那么在signal的时候,先对头结点firstWaiter进行唤醒。

唤醒的过程见下




final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;

/*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}


  


1.将这个头结点,从condition queue中移到之前提到的sync queue中。

2.LockSupport.unpark唤醒这个节点中的线程,进行锁争夺。

4 总结

ReentrantLock lock依赖的是一个双向链表sync queue

condition依赖的是一个单项链表condition queue

二者的阻塞和唤醒依赖的都是LockSupport的park和unpark方法。

公平锁与非公平锁的区别就在于获取锁的方式不同,公平锁获取,当前线程必须检查sync queue里面是否已经有排队线程。而非公平锁则不用考虑这一点,当前线程可以直接去获取锁。

开篇实现生产者消费者模型的时候,有两个问题,现在有答案了

1.队列满了,生产者线程怎么停下来的?队列从满又变为不满的时候,怎么重新激活。

---通过lock机制,保证同一时刻,只有一个线程获取到锁,要么生产,要么消费,队列满了之后,生产者线程调用providerCondition.await(),进入阻塞等待状态,使得生产者线程停下来。当消费线程消费的时候,调用 providerCondition.signal(),重新激活生产者线程。

2.队列空了,消费者线程如何停下来,又如何重新开始消费。

---与第一个问题同理。